
 1 Copyright © 2007 by ASME

Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and
 Information in Engineering Conference

IDETC/CIE 2007
September 4-7, 2007, Las Vegas, Nevada, USA

DETC2007-34636

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS
FOR CAE ANALYSIS

Hiroshi Masuda
masuda@nakl.t.u-tokyo.ac.jp

Kenta Ogawa
kogawa@nakl.t.u-tokyo.ac.jp

School of Engineering

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8856 Japan

Phone/Fax: +081-03-5841-6511

ABSTRACT
 Mesh deformation, which is sometimes referred to as mesh
morphing in CAE, is useful for providing various shapes of
meshes for CAE tools. This paper proposes a new framework
for interactively and consistently deforming assembly models of
sheet structure for mechanical parts. This framework is based
on a surface-based deformation, which calculates the vertex
positions so that the mean curvature normal is preserved at each
vertex in a least squares sense. While existing surface-based
deformation techniques cannot simultaneously deform assembly
mesh models, our method allows us to smoothly deform
disconnected meshes by propagating the rotations and
translations through disconnected vertices. In addition, we
extend our deformation technique to handle non-manifold
conditions, because shell structure models may include non-
manifold edges. We have applied our method to assembly mesh
models of automobile parts. Our experimental results have
shown that our method requires almost the same pre-processing
time as existing methods and can deform practical assembly
models interactively.

1. INTRODUCTION

In the manufacturing industry, many companies emphasize on
CAE analysis to reduce the lead time and improve the design
quality in the early stages of product development. Since
engineering products consist of many parts, CAE tools typically
process assembly mesh models. To calculate the optimized
products, the product shapes are repeatedly modified using
CAD tools and evaluated using CAE tools for structural
analysis or collision analysis. Such a trial-and-error
optimization process is very tedious work. To analyze the

assembly mesh models, analysts are forced to edit many parts
consistently.

It is important for CAE analysis to simplify the mesh editing
processes for assembly models. So far, interactive mesh
deformation techniques have been intensively studied [1-11].
Such research aims to develop modeling tools that can
intuitively deform mesh models while preserving the details of
the shapes. We note that “mesh deformation” is the term used in
the field of geometric modeling. The same techniques are
typically called “mesh morphing” in CAE. In this paper, we use
the term “mesh deformation”, because our technique depends
heavily on the contributions developed by geometric modeling
community.

There are two typical approaches for interactive mesh
deformation; one is volume-based deformation and the other is
surface-based deformation.

Volume-based deformation techniques, such as free-form
deformation (FFD) [1–3], change geometric shapes by
deforming the space in which the object lies. Volume-based
deformation can simultaneously deform several disconnected
models inside the volumetric space. However, it is difficult to
manage the constraints specified at vertices, edges and faces on
a mesh model, because this technique does not directly work on
mesh models.

Surface-based mesh deformation encodes geometric shapes
using partial differential equations and solves them to determine
vertex positions [4–11]. Recently, interactive techniques have
been intensively studied for surface-based deformation [6–11].
In such techniques, differential equations are approximated by a
sparse linear system and interactively solved. In typical
interactive deformation, the user first selects a fixed region,
which remains unchanged, and a handle region, which is used as

 2 Copyright © 2007 by ASME

the manipulation handle. The system decomposes a linear
system into the product of upper or lowers triangular matrices.
Since the linear system is sparse, this decomposition can be
very efficiently computed using state-of-the-art linear solvers
[12–15]. Finally, the user interactively deforms the shape by
dragging the handle over the screen.

Surface-based deformation is suitable for specifying various
constraints at vertices, edges and faces on a mesh model.
However, this method cannot propagate deformation to
disconnected meshes, because it encodes the shape using the
topological connectivity. When applied to an assembly model
with disconnected components, it requires tedious manual work
to consistently deform the multiple mesh models.

In addition, existing surface-based deformation techniques
cannot handle an assembly model that has non-manifold
conditions, although the shell structures used in CAE analysis
may include non-manifold edges. Non-manifold shells are
typically used for simplifying shapes such as ribs in CAE
models.

We intend to apply interactive deformation to modify the
shapes of the assembly shell models, which are often used to
analyze the design of products, such as automobiles [16-18].

Part models in an assembly model often do not spatially
contact, even if they are bolted or welded. Instead, these parts
are semantically connected using the attributes of contact
conditions, such as beam elements, bolting, contact regions, or
offset distances. Figure 1 shows a shell model, in which an
offset distance is defined. If two regions are virtually connected
by an offset distance, their relative positions should be
maintained when the shapes of the mesh models are deformed.

When an assembly model is deformed for CAE analysis,
disconnected meshes in the assembly model should be
simultaneously and consistently deformed according to the
contact conditions. While volume-based deformation can
deform disconnected models, it cannot manage the constraints
for the contact conditions, which are vital for CAE analysis.
Surface-based deformation is suitable for preserving
engineering constraints. However, it cannot be applied to
disconnected mesh models.

In this paper, we propose a deformation framework that can
be applied to assembly models. Our method propagates the
contact constraints between disconnected meshes based on
surface-based deformation. Our method can also be applied to
non-manifold meshes.

The main contribution of this paper is to propose: (1) a
deformation framework that interactively and consistently
modifies assembly models of shell structures; and (2)
constraints for manipulating mesh models with non-manifold
conditions.

In the following section, we describe our surface-based
deformation technique described in [11]. In Section 3, we
propose our constraint propagation method and constraints for
managing non-manifold conditions. In Section 4, we show
experimental results. We conclude the paper in Section 5.

2. FEATURE-PRESERVING DEFORMATION
First we explain our feature-preserving deformation method

[11]. Figure 2 shows some examples of deformed meshes. The
original model is shown in Figure 2(a). In this figure, blue
edges are fixed and red edges are treated as a manipulation
handle. When the shapes of the holes are not constrained, the
original shape is deformed as shown in Figure 2(b). Feature-
preserving deformation allows us to preserve the shapes of the
form-features during the interactive deformation, as shown in
Figure 2(c-d).

2.1 Constraints for coordinates
Let the mesh M be a pair { , }K P , where K is a simplicial

complex, which consists of vertices i , edges (,)i j , and
faces (, ,)i j k ; 1 2{ , , , }nP p p p is the vertex positions of the
mesh in 3 . The adjacent vertices of vertex i are denoted
by () { | (,) }N i j i j K  , which is called 1-ring.

Offset
distance

Figure 1. Shell model with an offset distance.

(a) Original shape
(b) Deformed shape with no

featured constraints.

(d) Feature-preserving
deformation (rotation)

fixed
handle

Figure 2. Feature-preserving deformation.

(c) Feature-preserving
deformation (stretch)

 3 Copyright © 2007 by ASME

The normal vector and mean curvature at vertex i are
referred to as i and in , respectively. According to [19-21], the
discrete mean curvature normal i i n can be approximated as:

()

1
() (cot cot)()

4i i i ij ij i j
i j N i
A

  


   n L p p p (1)

where iA is the Voronoi area, ij and ij are the two angles
opposite to the edge in the two triangles that share edge (,)i j .
Since a geometric shape can be encoded using the curvature
distribution, the detail shape can be approximately maintained
by preserving the original mean curvature in a least-squares
sense.

When the mean curvature normals of the original mesh are
denoted by 1 2{ , , , }n   , the error metric of mean curvature is
defined as:

2(())i i i
i

R 


 L p (2)

where iR is the rotation matrix for the normal vector in ;  is
the index set of vertices in the mesh model. { } ()iR i  are
calculated at all the vertices before the coordinates of the
vertices are calculated, as described in the next section.

When the user specifies fixed or handle regions on a mesh,
the following positional constraints are added as the boundary
conditions of differential equations:

()i i pi  p u (3)

where iu is any point that the user specifies; p is the index set
of vertices to which positional constraints are assigned.

We define a form-feature as a partial shape that has an
engineering meaning and represent it as a subset of (,)K P . We
constrain the relative positions of vertices in the form-feature f
using the following constraints:

  (,) (1,2, ,)i j i i j k fR i j F k n    p p p p   (4)
where ip and jp are coordinates of the original model;

 (=)i jR R is a rotation matrix at vertex i ; kF is a set of edges in
the form-feature k ; fn is the number of form-features.

2.2 Constraints for rotations

The rotation matrix iR in (2) and (4) can be determined by
the rotation axis iv and rotation angle i at vertex i . A
combination of iv and i can be also represented using a unit
quaternion as:

cos sin exp
2 2 2i i iQ
  

  v v (5)

where rotation axis iv is regarded as three distinct imaginary
numbers of a quaternion.

Since the logarithm of a unit quaternion is defined as the
inverse of the exponential as:

ln
2i i iQ


 r v . (6)

We assign the quaternion logarithm ir to each vertex. A
quaternion logarithm assigned to vertex i is referred to as ir .
When the value of ir is determined as 3Ri c , the mean
curvature normal at vertex i is rotated around axis / | |i ic c by
angle 2 | |ic .

For positional constraints and feature constraints, the
following two constraints are added for rotations:

 (1,2, ,)

0 (,) (1,2, ,)

j j p

i j k f

j n

i j F k n

      

r c

r r




 (7)

where jc is a user-defined rotation. The second equations
assign the same rotations to vertices in a form-feature. For
smoothly interpolating rotations for unconstrained vertices, we
introduce the following equations:

() 0 ()i i  L r . (8)
Equation (8) means that the quaternion logarithms { }ir are
smoothly determined so that the surface constructed by { }ir has
zero mean curvature at all the vertices.

2.3 Optimization

The rotations and coordinates can be calculated by solving
the following two optimization problems:

2 22 '

1 (,)

min ()
f

p k

n

i j j j k i j
i j k i j F

w w
    

          
   L r r c r r (9)

22

2'

1 (,)

min ()

 () ()

p

f

k

i i i j j j
i j

n

k i j i i j
k i j F

w

w R


  

 

   
    

 

 

L p R p u

p p p p 

 (10)

where iw and '
iw are weight values.

Each of (9) and (10) is partially differentiated with respect
to { }ir and { }ip , and then converted to a sparse linear system,
which can be efficiently factorized using state-of-the-art linear
solvers [12–14]. Once the matrix is factorized, vertex positions
can be interactively solved according to the positions and
rotations of the handle region.

3. DEFORMATION FOR ASSEMBLY MODELS
We extend our framework to deform an assembly model for a

shell structure, which is used for CAE analysis. In our method,
the pairs of vertices are selected from disconnected parts and
they are constrained so that the deformation of one part can be
propagated to other disconnected parts. We also introduce
constraints for managing non-manifold conditions, which often
appear in shell structures. Non-manifold edges are deformed so
that the angles of the adjacent faces are preserved in a least
squares sense. These two types of constraints can be
represented as linear equations and solved interactively using
factorized matrices.

 4 Copyright © 2007 by ASME

3.1 Constraints for disconnected vertices
Our method deforms disconnected meshes by adding

constraints between pairs of vertices. Figure 3 illustrates the
constraints between disconnected vertices. pi

(1) and pj
(2) are the

positions of vertex i in Mesh-1 and vertex j in Mesh-2,
respectively. ri

(1) and rj
(2) are quaternion logarithms, which

represent the rotations at the vertices. We define a virtual link
between these vertices. When the positions and rotations of the
vertices are modified in Mesh-1, the deformation is propagated
to Mesh-2 through this link.

We formalize the link between two disconnected vertices
using the following equations:

(1) (2) (1)
,

(1) (2)

() 0

0

i j i i j

i j

R      

p p

r r
 (11)

where ,i j is the initial value of (pi
(1)－pj

(2)); (1)
iR is a rotation

matrix calculated using (1)
ir and (2)

jr . Equation (11) maintains
the relative positions and angles between two vertices. These
constraints are added to (9) and (10).

Figure 4 shows an example of the deformed disconnected
meshes. This model consists of 16 parts. 15 links are defined
between the nearest points in a chain of primitives. This figure
shows that our method can smoothly deform disconnected parts.

We note that we actually solve equations defined in 2-ring
vertices, because Equation (1), which is defined in 1-ring
vertices, is converted to an equation in 2-ring vertices when the
least squares method is applied to solve the equations. This is
the reason why deformation can be smoothly propagated
through the disconnected vertices, although (11) does not
constrain the smoothness of two disconnected vertices

In some cases, it may be convenient to define the constraints
between a vertex and an edge, as shown in Figure 5. Then, we
specify similar constraints between a vertex and an edge. Since
a point on an edge can be represented as (2)(2) (1)j kt t p p using
parameter t , the following constraints can be defined between a
vertex in Mesh-1 and an edge in Mesh-2:

(2)(1) (2) (1)

(2)(1) (2)

{ (1) } 0

{ (1) } 0

i j k i i

i j k

t t R

t t

         

p p p

r r r
 (12)

Similarly, we can define constraints between a vertex and a
face, because a point on a triangle can be represented as:

(1)l i l j l k l l l ls t u s t u     p p p u . (13)

For specifying constraints between two disconnected meshes,
the user specifies regions to be constrained, and then the system
calculates the distances from each specified vertex to all
vertices in other disconnected meshes. When the distance to the
nearest point is less than a certain threshold, constraints are
specified between the pair entities.

In our experiment, when two or more constraints are
specified within 1-ring vertices, the constrained region becomes
too rigid. Therefore, we avoid selecting vertex pairs in 1-ring,
as shown in Figure 3.

Figure 6 shows examples of deformed meshes. In Figure 6(a),
pairs of vertices are constrained in disconnected boundaries,
which are shown in green. In Figure 6(b), two mesh models are
deformed consistently. In Figure 6(c), different pairs of vertices
are connected by links, as shown in green lines. Figure 6(d)
shows the deformed shapes. These results show that our method
is useful to deform disconnected meshes consistently.

Figure5. Constraint between a vertex and an edge.

Mesh-1 Mesh-2

Figure 4. Deformation of disconnected meshes.

Figure 3. Pair of vertices to be connected.

Mesh-1
Mesh-2

 5 Copyright © 2007 by ASME

3.2 Constraints for non-manifold conditions
In CAE analysis, the sheet structure may have non-manifold

conditions. For example, when a rib is approximated by a sheet,
the junction edges are shared by three faces. Since the
neighborhood of a non-manifold vertex is not homeomorphic to
a plane or a half-plane, its mean curvature normal cannot be
defined by (1).

We now introduce the constraints for the non-manifold
conditions. We subdivide the faces around a non-manifold
vertex into a set of fans, as shown in Figure 7. A fan is defined
as a set of connected faces that are homeomorphic to a half-
plane. The neighborhood around a vertex in Figure 7(a) is
subdivided into four fans, as shown in Figure 7(b).

(a) Non-manifold model.

2

3 4

1

(b) Four fans.

fan4

fan3 fan1

fan2

Figure 6. Deformation of disconnected planes.

(a) Pair of boundaries is connected.

fixed

handle

(c) Two pairs of boundaries are connected.

(b) Deformed shapes.

connected

fixed
handle

connected

connected

(d) Deformed shape.

Figure 7. Non-manifold model and fans.

 6 Copyright © 2007 by ASME

We introduce the following equation for the fan in Figure 8:

1

0 0
20

0 1 1 0

1
(,) { (cot cot)()

4 (,)

 cot () cot ()}

n

h i i i
i

n n

L m
A m

 

 




  

   

p p p
p

p p p p
 (14)

where m represents the mth fan; 0(,)A mp is the Voronoi area of
the mth fan. Each fan is constrained separately.

In Figure 7(a), an edge is shared by four faces. When this
model is deformed, the following constraints preserve angles

1 2 3 4{ , , , }q q q q :
1

(,) 0
(,)

(1,2,3,4)
1

(,)
(,)

m

h i
i

h i i i
i

L m
A m

m
L m R

A m


   

r
r

p
p

 (15)

where m
i is the initial value of (14) for the mth fan. Since the

four fans share the rotation matrix iR , the angles between
adjacent fans are preserved.

Figure 9 shows a deformed shape of a non-manifold mesh.
This result shows that the deformation is smoothly propagated
through the non-manifold edges and the angles between
adjacent faces are preserved.

3.3 Implementation
We implemented our framework using C++ on PCs. Mesh
models are constructed based on half-edge structure. The
graphic user interface is implemented using a cross-platform
library FOX toolkit (http://www.fox-toolkit.org), which runs on
both Linux and Windows operating systems.

4. EXPERIMENTAL RESULTS
We evaluated our method using shell structure models of

automobile parts. In our experiments, assembly models could be
deformed interactively, once the matrices were factorized.

The assembly model in Figure 10(a) consists of Part-A and
Part-B, each of which has non-manifold edges at the junctions
of the ribs. This assembly model has 5,243 faces, 15,729 edges
and 2,758 vertices. There is a gap between the two meshes and
they do not contact spatially at any point. In Figure 10(b), a
fixed region and a handle region are shown by blue and red
lines, respectively. We selected the region to be connected in
Part-B. The system then detected the nearest vertices in Part-A
and added the constraints between the pairs of vertices.

Figure 10(c) shows a deformed shape when the handle region
is rotated and translated. When Part-A was deformed, Part-B
was also consistently deformed. In Figure 10(d), vertex pairs
were selected only in the left side of Part-B. The width of Part-
B was preserved when Part-A was stretched. In the both cases,
the non-manifold edges are consistently deformed.

Figure 11(a) is an assembly model created for evaluating
collision absorption. Comp-A has 4 shell parts, 5,092 faces,
15,276 edges and 2,807 vertices. Comp-B has 10 shell parts,
18,176 faces, 54,528 edges and 9,749 vertexes.

Figure 12 shows the deformed shape of Comp-A. In Figure
12(a), the four holes shown in blue are fixed and the edges in
red are specified as a manipulation handle. In this example, we
specified connected regions on the assembly model, and the
system automatically detected the nearest vertices and the
specified constraints between the pairs. Figure 12 (b) shows a
deformed shape when the handle was moved upwards.

Figure 13 shows the deformed shape of Comp-B. We fixed
the regions shown in blue boxes and specified a handle region
as shown in a red box. We repeatedly selected two disconnected
meshes to be connected and specified the contact regions.
Figure 13(b) shows a deformed shape. This result shows that
our method can be applied to relatively complex assembly
models.

Figure 9. Deformation of non-manifold model.

(a) Original model

(b) Deformed model

fixed

handle

handle

fixed

3

3p

n

2

1

2

1n  1p

2p
1np

np
0p

Figure 8. A fan around vertex 0p .

 7 Copyright © 2007 by ASME

(a) Original meshes.

 (b) Constrained regions.

(c) Deformed meshes.

 (d) Deformed meshes with different constraints.

Figure 10. Deformation of an assembly model

with non-manifold edges.

(a) Original assembly model

(b)Sub-assembly model.

(c) Sub-assembly model.

Comp-B

Comp-A

Figure 11. Assembly models for the evaluation of
collision absorption.

 8 Copyright © 2007 by ASME

5. CONCLUSION
We have proposed a framework that can interactively and

consistently deform disconnected mesh models for shell
structures. Our method can propagate the deformation of one
mesh to other disconnected meshes by introducing linear
constraints between two vertices in disconnected meshes. We
have extended our method and enabled to handle non-manifold
conditions in shell structure models. In our framework, all the
constraints are represented in linear forms and are solved very
efficiently using sparse linear system solvers. We have shown
that practical assembly models could be consistently and
interactively deformed.

In future work, we would like to investigate methods for
managing various types of contact attributes used in CAE
models. Such information would be useful for detecting vertex
pairs effectively and robustly. We also would like to improve
the performance of the deformation. Practical assembly models
may have hundreds of thousands of vertices. We would like to
improve the performance by incorporating GPU (Graphics
Processing Unit). Finally, we would like to implement our
algorithms on commercial CAD or CAE tools.

ACKNOWLEDGMENTS
The mesh models of automobile parts in Figure 2 and 11–13

were provided courtesy of Mitsubishi Motors Corporation. The
mesh models in Figure 1 and 10 are sample models of the
commercial software package Altair/HyperMesh.

REFERENCES
[1] Sederberg, T. W. and Parry, S. R, 1986, “Free-Form

Deformation of Solid Geometric Models”, Proceedings
of SIGGRAPH 1986, pp. 151–160.

[2] Coquillart, S., 1990, “Extended Free-Form Deformation:
A Sculpturing Tool for 3D Geometric Modeling”,
Proceedings of SIGGRAPH 1990, pp. 187–196.

[3] MacCracken, R. and Joy, K. I., 1996, “Free-Form
Deformations with Lattices of Arbitrary Topology”,
Proceedings of SIGGRAPH 1996, pp. 181–188.

[4] Bloor, M. I. G. and Michael, J. W., 1990, “Using Partial
Differential Equations to Generate Free-Form Surfaces”,
Computer-Aided Design, Vol. 22, No. 4, pp. 202-212.

[5] Ugail, H., Bloor, M. I. G. and Michael, J. W., 1999,
“Techniques for Interactive Design Using the PDE
Method”, ACM Transactions on Graphics, Vol. 18, No. 2,
pp. 195-212.

[6] Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl,
C. and Seidel, H.-P., 2004, “Laplacian Surface Editing”,
Proceedings of the 2004 Eurographics Symposium on
Geometry Processing, pp. 175–184.

[7] Botsch, M. and Kobbelt, L., 2004, “An Intuitive
Framework for Real-Time Freeform Modeling”, ACM
Transactions on Graphics, Vol. 23, No. 3, pp. 630–634.

handle

Figure13. Deformation of Comp-B.

(b) Deformed model

fixed (a) Original model

handle

fixed

(a) Original model

(b) Deformed model

Figure 12. Deformation of Comp-A.

 9 Copyright © 2007 by ASME

[8] Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B. and
Shum,H.-Y., 2004, “Mesh Editing with Poisson-Based
Gradient Field Manipulation”, ACM Transactions on
Graphics, Vol. 23, No.3, pp. 644–651.

[9] Zayer, R., Rössl, C., Karni, Z. and Seidel, H.-P., 2005,
“Harmonic Guidance for Surface Deformation”,
Computer Graphics Forum, Vol. 24, No. 3, pp. 601--609.

[10] Masuda, H., Yoshioka, Y. and Furukawa, Y., 2006,
“Interactive Mesh Deformation Using Equality-
Constrained Least Squares”, Computers and Graphics,
Vol. 30, No. 6, pp. 936-946.

[11] Masuda, H., Yoshioka, Y. and Furukawa, Y., 2006,
“Preserving Form-Features in Interactive Mesh
Deformation”, LNCS 4077 (Proceedings of Geometric
Modeling and Processing - GMP2006), pp. 207-220.

[12] Gould, N.I.M., Hu, Y. and Scott, J.A., 2005, “A
Numerical Evaluation of Sparse Direct Solvers for the
Solution of Large Sparse, Symmetric Linear Systems of
Equations”, Technical Report RAL-TR-2005-005,
Rutherford Appleton Laboratory.

[13] Toledo, S., Chen, D. and Rotkin, V., 2003, “TAUCS: A
Library of Sparse Linear Solvers”, http:
//www.tau.ac.il/~stoledo/taucs/.

[14] Demmel, J., Gilbert, J. and Li, X., 1995, “SuperLU
User's Guide”.

[15] Botsch, M., Bommes, D. and Kobbelt, L., 2005,
“Efficient Linear System Solvers for Mesh Processing”,
IMA Conference on the Mathematics of Surfaces 2005,
pp. 62–83.

[16] Cavendish, J. C., 1995, “Integrating feature-based
surface design with freeform deformation”, Computer-
Aided Design, 703-711.

[17] Fontana, M., F.,Meirana, M. , 1999, “A free-form feature
taxonomy”, The Computer Graphics Forum, pp.107–118.

[18] Pernot, J.P., Guillet, S., Léon, J.C., Catalano, C.E.,
Giannini, F. and Falcidieno, B., 2002, “A Shape
Deformation Tool to Model Character Lines in the Early
Design Phases”, The Shape Modeling International
Conference, 165–173.

[19] Meyer, M., Desbrun, M., Schröder, P. and Barr, A. H.,
2003, “Discrete Differential-Geometry Operators for
Triangulated 2-Manifolds”, Proceedings of Visualization
and Mathematics III, pp. 35–57.

[20] Pinkall, U. and Polthier, K., 1993, “Computing Discrete
Minimal Surfaces and Their Conjugates”, Experimental
Mathematics, Vol. 2, No. 1, pp. 15–36.

[21] Alexa, M., 2003, “Differential Coordinates for Local
Mesh Morphing and Deformation”, The Visual
Computer, Vol. 19, No. 2-3, pp.105–114.

