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ABSTRACT 
 Mesh deformation, which is sometimes referred to as mesh 
morphing in CAE, is useful for providing various shapes of 
meshes for CAE tools. This paper proposes a new framework 
for interactively and consistently deforming assembly models of 
sheet structure for mechanical parts. This framework is based 
on a surface-based deformation, which calculates the vertex 
positions so that the mean curvature normal is preserved at each 
vertex in a least squares sense. While existing surface-based 
deformation techniques cannot simultaneously deform assembly 
mesh models, our method allows us to smoothly deform 
disconnected meshes by propagating the rotations and 
translations through disconnected vertices. In addition, we 
extend our deformation technique to handle non-manifold 
conditions, because shell structure models may include non-
manifold edges. We have applied our method to assembly mesh 
models of automobile parts. Our experimental results have 
shown that our method requires almost the same pre-processing 
time as existing methods and can deform practical assembly 
models interactively.  
 
1. INTRODUCTION 

In the manufacturing industry, many companies emphasize on 
CAE analysis to reduce the lead time and improve the design 
quality in the early stages of product development. Since 
engineering products consist of many parts, CAE tools typically 
process assembly mesh models. To calculate the optimized 
products, the product shapes are repeatedly modified using 
CAD tools and evaluated using CAE tools for structural 
analysis or collision analysis. Such a trial-and-error 
optimization process is very tedious work. To analyze the 

assembly mesh models, analysts are forced to edit many parts 
consistently.  

It is important for CAE analysis to simplify the mesh editing 
processes for assembly models. So far, interactive mesh 
deformation techniques have been intensively studied [1-11]. 
Such research aims to develop modeling tools that can 
intuitively deform mesh models while preserving the details of 
the shapes. We note that “mesh deformation” is the term used in 
the field of geometric modeling. The same techniques are 
typically called “mesh morphing” in CAE. In this paper, we use 
the term “mesh deformation”, because our technique depends 
heavily on the contributions developed by geometric modeling 
community. 

There are two typical approaches for interactive mesh 
deformation; one is volume-based deformation and the other is 
surface-based deformation.  

Volume-based deformation techniques, such as free-form 
deformation (FFD) [1–3], change geometric shapes by 
deforming the space in which the object lies. Volume-based 
deformation can simultaneously deform several disconnected 
models inside the volumetric space. However, it is difficult to 
manage the constraints specified at vertices, edges and faces on 
a mesh model, because this technique does not directly work on 
mesh models.  

Surface-based mesh deformation encodes geometric shapes 
using partial differential equations and solves them to determine 
vertex positions [4–11]. Recently, interactive techniques have 
been intensively studied for surface-based deformation [6–11]. 
In such techniques, differential equations are approximated by a 
sparse linear system and interactively solved. In typical 
interactive deformation, the user first selects a fixed region, 
which remains unchanged, and a handle region, which is used as 
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the manipulation handle. The system decomposes a linear 
system into the product of upper or lowers triangular matrices.  
Since the linear system is sparse, this decomposition can be 
very efficiently computed using state-of-the-art linear solvers 
[12–15]. Finally, the user interactively deforms the shape by 
dragging the handle over the screen. 

Surface-based deformation is suitable for specifying various 
constraints at vertices, edges and faces on a mesh model. 
However, this method cannot propagate deformation to 
disconnected meshes, because it encodes the shape using the 
topological connectivity. When applied to an assembly model 
with disconnected components, it requires tedious manual work 
to consistently deform the multiple mesh models.  

In addition, existing surface-based deformation techniques 
cannot handle an assembly model that has non-manifold 
conditions, although the shell structures used in CAE analysis 
may include non-manifold edges. Non-manifold shells are 
typically used for simplifying shapes such as ribs in CAE 
models. 

We intend to apply interactive deformation to modify the 
shapes of the assembly shell models, which are often used to 
analyze the design of products, such as automobiles [16-18].  

Part models in an assembly model often do not spatially 
contact, even if they are bolted or welded. Instead, these parts 
are semantically connected using the attributes of contact 
conditions, such as beam elements, bolting, contact regions, or 
offset distances. Figure 1 shows a shell model, in which an 
offset distance is defined. If two regions are virtually connected 
by an offset distance, their relative positions should be 
maintained when the shapes of the mesh models are deformed.  

When an assembly model is deformed for CAE analysis, 
disconnected meshes in the assembly model should be 
simultaneously and consistently deformed according to the 
contact conditions. While volume-based deformation can 
deform disconnected models, it cannot manage the constraints 
for the contact conditions, which are vital for CAE analysis. 
Surface-based deformation is suitable for preserving 
engineering constraints. However, it cannot be applied to 
disconnected mesh models.  

In this paper, we propose a deformation framework that can 
be applied to assembly models. Our method propagates the 
contact constraints between disconnected meshes based on 
surface-based deformation. Our method can also be applied to 
non-manifold meshes. 

 

The main contribution of this paper is to propose: (1) a 
deformation framework that interactively and consistently 
modifies assembly models of shell structures; and (2) 
constraints for manipulating mesh models with non-manifold 
conditions. 

In the following section, we describe our surface-based 
deformation technique described in [11]. In Section 3, we 
propose our constraint propagation method and constraints for 
managing non-manifold conditions. In Section 4, we show 
experimental results. We conclude the paper in Section 5. 

2. FEATURE-PRESERVING DEFORMATION 
First we explain our feature-preserving deformation method 

[11].  Figure 2 shows some examples of deformed meshes. The 
original model is shown in Figure 2(a). In this figure, blue 
edges are fixed and red edges are treated as a manipulation 
handle. When the shapes of the holes are not constrained, the 
original shape is deformed as shown in Figure 2(b). Feature-
preserving deformation allows us to preserve the shapes of the 
form-features during the interactive deformation, as shown in 
Figure 2(c-d).   

 
 
2.1 Constraints for coordinates  
Let the mesh M  be a pair { , }K P , where K is a simplicial 

complex, which consists of vertices i , edges ( , )i j , and 
faces ( , , )i j k ; 1 2{ , , , }nP p p p is the vertex positions of the 
mesh in 3 . The adjacent vertices of vertex i  are denoted 
by ( ) { | ( , ) }N i j i j K  , which is called 1-ring.  

Offset 
distance 

Figure 1. Shell model with an offset distance.  

(a) Original shape 
(b) Deformed shape with no 

featured constraints. 

(d) Feature-preserving 
deformation (rotation) 

fixed 
handle 

Figure 2. Feature-preserving deformation.  
 

(c) Feature-preserving 
deformation (stretch) 
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The normal vector and mean curvature at vertex i  are 
referred to as i  and in , respectively. According to [19-21], the 
discrete mean curvature normal i i n  can be approximated as: 

( )

1
( ) (cot cot )( )

4i i i ij ij i j
i j N i
A

  


   n L p p p        (1) 

where iA  is the Voronoi area, ij  and ij  are the two angles 
opposite to the edge in the two triangles that share edge ( , )i j . 
Since a geometric shape can be encoded using the curvature 
distribution, the detail shape can be approximately maintained 
by preserving the original mean curvature in a least-squares 
sense.  

When the mean curvature normals of the original mesh are 
denoted by 1 2{ , , , }n   , the error metric of mean curvature is 
defined as: 

2( ( ) )i i i
i

R 


 L p                                (2) 

where iR is the rotation matrix for the normal vector in ;  is 
the index set of vertices in the mesh model. { }  ( )iR i   are 
calculated at all the vertices before the coordinates of the 
vertices are calculated, as described in the next section. 

When the user specifies fixed or handle regions on a mesh, 
the following positional constraints are added as the boundary 
conditions of differential equations: 

( )i i pi  p u                               (3) 

where iu is any point that the user specifies; p is the index set 
of vertices to which positional constraints are assigned. 

We define a form-feature as a partial shape that has an 
engineering meaning and represent it as a subset of ( , )K P . We 
constrain the relative positions of vertices in the form-feature f  
using the following constraints: 

  ( , ) ( 1,2, , )i j i i j k fR i j F k n    p p p p          (4) 
where ip  and jp  are coordinates of the original model; 

 (= )i jR R is a rotation matrix at vertex i ; kF is a set of edges in 
the form-feature k ; fn is the number of form-features.  
 
2.2 Constraints for rotations 

The rotation matrix iR in (2) and (4) can be determined by 
the rotation axis iv  and rotation angle i  at vertex i . A 
combination of iv  and i  can be also represented using a unit 
quaternion as: 

cos sin exp
2 2 2i i iQ
  

  v v                   (5) 

where rotation axis iv  is regarded as three distinct imaginary 
numbers of a quaternion.  

Since the logarithm of a unit quaternion is defined as the 
inverse of the exponential as: 

ln
2i i iQ


 r v  .                                 (6) 

We assign the quaternion logarithm ir  to each vertex. A 
quaternion logarithm assigned to vertex i  is referred to as ir . 
When the value of ir  is determined as 3Ri c , the mean 
curvature normal at vertex i  is rotated around axis / | |i ic c  by 
angle 2 | |ic .  

For positional constraints and feature constraints, the 
following two constraints are added for rotations: 

                   ( 1,2, , )

0   ( , )  ( 1,2, , )

j j p

i j k f

j n

i j F k n

      

r c

r r




             (7) 

where jc  is a user-defined rotation. The second equations 
assign the same rotations to vertices in a form-feature. For 
smoothly interpolating rotations for unconstrained vertices, we 
introduce the following equations:  

( ) 0    ( )i i  L r .                              (8) 
Equation (8) means that the quaternion logarithms { }ir  are 
smoothly determined so that the surface constructed by { }ir has 
zero mean curvature at all the vertices. 
 
2.3 Optimization 

The rotations and coordinates can be calculated by solving 
the following two optimization problems: 

2 22 '

1 ( , )

min ( )
f

p k

n

i j j j k i j
i j k i j F

w w
    

          
   L r r c r r           (9) 

22

2'

1 ( , )

min ( )

                         ( ) ( )

p

f

k

i i i j j j
i j

n

k i j i i j
k i j F

w

w R


  

 

   
    

 

 

L p R p u

p p p p 

     (10) 

where iw and '
iw are weight values. 

Each of (9) and (10) is partially differentiated with respect 
to { }ir and { }ip , and then converted to a sparse linear system, 
which can be efficiently factorized using state-of-the-art linear 
solvers [12–14]. Once the matrix is factorized, vertex positions 
can be interactively solved according to the positions and 
rotations of the handle region.  

3. DEFORMATION FOR ASSEMBLY MODELS 
We extend our framework to deform an assembly model for a 

shell structure, which is used for CAE analysis. In our method, 
the pairs of vertices are selected from disconnected parts and 
they are constrained so that the deformation of one part can be 
propagated to other disconnected parts. We also introduce 
constraints for managing non-manifold conditions, which often 
appear in shell structures. Non-manifold edges are deformed so 
that the angles of the adjacent faces are preserved in a least 
squares sense. These two types of constraints can be 
represented as linear equations and solved interactively using 
factorized matrices. 
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3.1 Constraints for disconnected vertices 
Our method deforms disconnected meshes by adding 

constraints between pairs of vertices. Figure 3 illustrates the 
constraints between disconnected vertices. pi

(1) and pj
(2) are the 

positions of vertex i in Mesh-1 and vertex j in Mesh-2, 
respectively. ri

(1) and rj
(2)  are quaternion logarithms, which 

represent the rotations at the vertices. We define a virtual link 
between these vertices. When the positions and rotations of the 
vertices are modified in Mesh-1, the deformation is propagated 
to Mesh-2 through this link.  

We formalize the link between two disconnected vertices 
using the following equations: 

(1) (2) (1)
,

(1) (2)

( ) 0

0

i j i i j

i j

R      

p p

r r
                (11) 

where ,i j  is the initial value of (pi
(1)－pj

(2)); (1)
iR  is a rotation 

matrix calculated using (1)
ir  and (2)

jr . Equation (11) maintains 
the relative positions and angles between two vertices. These 
constraints are added to (9) and (10).  

Figure 4 shows an example of the deformed disconnected 
meshes. This model consists of 16 parts. 15 links are defined 
between the nearest points in a chain of primitives. This figure 
shows that our method can smoothly deform disconnected parts. 

We note that we actually solve equations defined in 2-ring 
vertices, because Equation (1), which is defined in 1-ring 
vertices, is converted to an equation in 2-ring vertices when the 
least squares method is applied to solve the equations. This is 
the reason why deformation can be smoothly propagated 
through the disconnected vertices, although (11) does not 
constrain the smoothness of two disconnected vertices 

In some cases, it may be convenient to define the constraints 
between a vertex and an edge, as shown in Figure 5. Then, we 
specify similar constraints between a vertex and an edge. Since 
a point on an edge can be represented as (2)(2) (1 )j kt t p p using 
parameter t , the following constraints can be defined between a 
vertex in Mesh-1 and an edge in Mesh-2: 

(2)(1) (2) (1)

(2)(1) (2)

{  (1 ) } 0

{  (1 ) } 0

i j k i i

i j k

t t R

t t

         

p p p

r r r
      (12) 

Similarly, we can define constraints between a vertex and a 
face, because a point on a triangle can be represented as: 

( 1)l i l j l k l l l ls t u s t u     p p p u .         (13) 

For specifying constraints between two disconnected meshes, 
the user specifies regions to be constrained, and then the system 
calculates the distances from each specified vertex to all 
vertices in other disconnected meshes. When the distance to the 
nearest point is less than a certain threshold, constraints are 
specified between the pair entities.  

In our experiment, when two or more constraints are 
specified within 1-ring vertices, the constrained region becomes 
too rigid. Therefore, we avoid selecting vertex pairs in 1-ring, 
as shown in Figure 3.  

Figure 6 shows examples of deformed meshes. In Figure 6(a), 
pairs of vertices are constrained in disconnected boundaries, 
which are shown in green. In Figure 6(b), two mesh models are 
deformed consistently.  In Figure 6(c), different pairs of vertices 
are connected by links, as shown in green lines. Figure 6(d) 
shows the deformed shapes. These results show that our method 
is useful to deform disconnected meshes consistently. 

 

 

 
Figure5. Constraint between a vertex and an edge. 

Mesh-1 Mesh-2 

 
Figure 4. Deformation of disconnected meshes. 

 
Figure 3. Pair of vertices to be connected. 

Mesh-1 
Mesh-2 
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3.2 Constraints for non-manifold conditions 
In CAE analysis, the sheet structure may have non-manifold 

conditions. For example, when a rib is approximated by a sheet, 
the junction edges are shared by three faces. Since the 
neighborhood of a non-manifold vertex is not homeomorphic to 
a plane or a half-plane, its mean curvature normal cannot be 
defined by (1). 

We now introduce the constraints for the non-manifold 
conditions. We subdivide the faces around a non-manifold 
vertex into a set of fans, as shown in Figure 7. A fan is defined 
as a set of connected faces that are homeomorphic to a half-
plane. The neighborhood around a vertex in Figure 7(a) is 
subdivided into four fans, as shown in Figure 7(b).  

 
 

 
 

(a)  Non-manifold model. 

2

3 4

1

(b)  Four fans. 

fan4 

fan3 fan1 

fan2 

Figure 6. Deformation of disconnected planes. 

(a) Pair of boundaries is connected. 

fixed 

handle 

(c) Two pairs of boundaries are connected. 

(b) Deformed shapes. 

connected 

fixed 
handle 

connected 

connected 

(d) Deformed shape. 

Figure 7. Non-manifold model and fans.  
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We introduce the following equation for the fan in Figure 8: 

1

0 0
20

0 1 1 0

1
( , ) { (cot cot )( )

4 ( , )

                  cot ( ) cot ( )}

n

h i i i
i

n n

L m
A m

 

 




  

   

p p p
p

p p p p
       (14) 

where m represents the mth fan; 0( , )A mp is the Voronoi area of 
the mth fan. Each fan is constrained separately. 

In Figure 7(a), an edge is shared by four faces. When this 
model is deformed, the following constraints preserve angles 

1 2 3 4{ , , , }q q q q :  
1

( , ) 0
( , )

( 1,2,3,4)
1

( , )
( , )

m

h i
i

h i i i
i

L m
A m

m
L m R

A m


   

r
r

p
p

        (15) 

where m
i is the initial value of (14) for the mth fan. Since the 

four fans share the rotation matrix iR , the angles between 
adjacent fans are preserved.  

Figure 9 shows a deformed shape of a non-manifold mesh. 
This result shows that the deformation is smoothly propagated 
through the non-manifold edges and the angles between 
adjacent faces are preserved.  
 
3.3 Implementation 
We implemented our framework using C++ on PCs. Mesh 
models are constructed based on half-edge structure. The 
graphic user interface is implemented using a cross-platform 
library FOX toolkit (http://www.fox-toolkit.org), which runs on 
both Linux and Windows operating systems. 

4. EXPERIMENTAL RESULTS 
We evaluated our method using shell structure models of 

automobile parts. In our experiments, assembly models could be 
deformed interactively, once the matrices were factorized.  

The assembly model in Figure 10(a) consists of Part-A and 
Part-B, each of which has non-manifold edges at the junctions 
of the ribs. This assembly model has 5,243 faces, 15,729 edges 
and 2,758 vertices. There is a gap between the two meshes and 
they do not contact spatially at any point. In Figure 10(b), a 
fixed region and a handle region are shown by blue and red 
lines, respectively. We selected the region to be connected in 
Part-B. The system then detected the nearest vertices in Part-A 
and added the constraints between the pairs of vertices. 

Figure 10(c) shows a deformed shape when the handle region 
is rotated and translated. When Part-A was deformed, Part-B 
was also consistently deformed. In Figure 10(d), vertex pairs 
were selected only in the left side of Part-B. The width of Part-
B was preserved when Part-A was stretched. In the both cases, 
the non-manifold edges are consistently deformed.  

Figure 11(a) is an assembly model created for evaluating 
collision absorption. Comp-A has 4 shell parts, 5,092 faces, 
15,276 edges and 2,807 vertices. Comp-B has 10 shell parts, 
18,176 faces, 54,528 edges and 9,749 vertexes. 

Figure 12 shows the deformed shape of Comp-A. In Figure 
12(a), the four holes shown in blue are fixed and the edges in 
red are specified as a manipulation handle. In this example, we 
specified connected regions on the assembly model, and the 
system automatically detected the nearest vertices and the 
specified constraints between the pairs. Figure 12 (b) shows a 
deformed shape when the handle was moved upwards.  

Figure 13 shows the deformed shape of Comp-B. We fixed 
the regions shown in blue boxes and specified a handle region 
as shown in a red box. We repeatedly selected two disconnected 
meshes to be connected and specified the contact regions.  
Figure 13(b) shows a deformed shape. This result shows that 
our method can be applied to relatively complex assembly 
models. 

 

 
Figure 9. Deformation of non-manifold model. 

(a) Original model 

(b) Deformed model 

fixed 

handle 

handle 
 

fixed 
 

3

3p

n

2

1

2

1n  1p

2p
1np

np
0p

Figure 8. A fan around vertex 0p . 
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(a) Original meshes. 

 
 

 
 (b) Constrained regions. 

 
 

 
(c) Deformed meshes. 

 
 

 
 (d) Deformed meshes with different constraints. 
 

 
Figure 10. Deformation of an assembly model  

with non-manifold edges. 

(a) Original assembly model 

(b)Sub-assembly model. 

(c) Sub-assembly model. 

Comp-B 

Comp-A 

Figure 11. Assembly models for the evaluation of  
collision absorption.  
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5. CONCLUSION 
We have proposed a framework that can interactively and 

consistently deform disconnected mesh models for shell 
structures.  Our method can propagate the deformation of one 
mesh to other disconnected meshes by introducing linear 
constraints between two vertices in disconnected meshes. We 
have extended our method and enabled to handle non-manifold 
conditions in shell structure models. In our framework, all the 
constraints are represented in linear forms and are solved very 
efficiently using sparse linear system solvers. We have shown 
that practical assembly models could be consistently and 
interactively deformed. 

In future work, we would like to investigate methods for 
managing various types of contact attributes used in CAE 
models. Such information would be useful for detecting vertex 
pairs effectively and robustly.  We also would like to improve 
the performance of the deformation. Practical assembly models 
may have hundreds of thousands of vertices. We would like to 
improve the performance by incorporating GPU (Graphics 
Processing Unit). Finally, we would like to implement our 
algorithms on commercial CAD or CAE tools. 
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