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Deterioration surveys of large structures such as fur-

naces have been mainly conducted by visual inspec-

tion, but it is desirable to automatically detect dete-

rioration using point clouds captured by the terres-

trial laser scanner. In this study, we propose flexi-

ble methods for detecting various scales of cracks, de-

lamination, and adhesion on furnace walls by using a

machine learning technique. Since small cracks have

few geometrical features, they are detected from the

reflection intensity images generated by projecting a

point cloud onto a two-dimensional plane. For detect-

ing cracks on the image, we use the U-Net fine-tuned

by crack images denoised with a median filter. For de-

tecting delamination and adhesion, a wall surface is

approximated by a smooth B-spline surface, and dete-

rioration is detected as differences between the point

cloud and the approximated surface. However, in this

method, the resolution of the B-spline surface has to be

carefully determined according to the expected deteri-

oration sizes. To robustly detect deterioration at var-

ious scales, we introduce multiscale 3D features, and

detect deterioration using both multiscale 3D features

and 2D features. In actual walls, it is difficult to dis-

tinguish between cracks and delamination because de-

lamination grows from cracks. To detect both types

of deterioration in a uniform manner, we combine the

two detectors and propose an integrated detector for

detecting deterioration at various scales. Our experi-

mental results showed that our methods could stably

detect various scales of degradation on furnace walls.

Keywords: terrestrial laser scanner, point cloud, point

processing, deterioration detection, machine learning

1. Introduction

While industrial facilities built during Japan’s eco-

nomic growth period are in need of maintenance, a lack

of human resources makes labor-intensive maintenance

work difficult. To improve the efficiency of maintenance

work, point clouds captured by a terrestrial laser scanner

(TLS) are effective. By utilizing high-density point clouds

of an industrial facility, the current status of the facility

can be acquired and inspected. For example, Kitratporn

et al. [1] measured deformations such as tilt and deflection

in bridges using point clouds. Hada et al. [2] developed a

bridge inspection system using point clouds acquired by a

bridge inspection support robot.

In recent years, the accuracy and density of point clouds

have greatly improved, and point clouds can now be used

to detect deterioration at various scales. Traditionally,

deterioration of large-scale facilities has been diagnosed

mainly by visual inspection, but the quality of visual in-

spection is often dependent on the skills of operators. Fur-

thermore, it is difficult to quantitatively measure deterio-

ration by visual inspection. If point clouds can be used

to detect the location and extent of deterioration, it is ex-

pected to improve the efficiency and quality of inspections

of facilities.

In this paper, we discuss methods for stably detecting

delamination, adhesion, and cracks from point clouds of

walls of large facilities. While many existing methods

have been proposed to detect deterioration on flat planar

walls, we consider walls with rotational shapes, such as

blast furnaces and storage tanks.

Since the actual wall shapes often differ from the

shapes specified in the drawings, it is required to dis-

tinguish deterioration from distortion caused by the con-

struction process. In addition, deterioration detection re-

quires careful parameter tuning depending on the scale of

deterioration. We eliminate such trial-and-error parame-

ter tuning by using a machine learning technique [3].

We note that the methods discussed in this paper will

be applicable to various facilities with rotating shapes, but

we focus on deterioration detection for furnace walls be-

cause deterioration detectors require training data for ma-

chine learning, which depend on the deterioration modes

for each facility type.

First, we discuss methods for detecting delamination

and adhesion with relatively large scales. For adhesion

and delamination, we extend the method proposed by

Shinozaki et al. [4, 5] and introduce a new detector using

multiscale 3D features combined with 2D features. While

the method in [4, 5] required careful parameter tuning ac-

cording to the scales of deterioration, our method does not

need such trial-and-error parameter tuning by using ma-

chine learning techniques. Next, we discuss methods for

detecting cracks with smaller scales. For crack detection,
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we improve the method proposed by Yamamoto et al. [6].

Finally, we propose an integrated method for detecting all

of delamination, adhesion, and crack in a uniform man-

ner. In actual walls of large facilities, delamination often

occurs due to the crack growth. It is difficult to distinguish

between delamination and cracks due to many intermedi-

ate cases. Therefore, we unify the two detectors to detect

delamination, adhesion, and cracks in a unified manner.

Section 2 describes the related work, and Section 3

outlines our proposed methods. Section 4 describes the

method for detecting delamination and adhesion, and Sec-

tion 5 describes the method for detecting cracks. Then,

Section 6 describes the integrated deterioration detection

method. Section 7 presents the experimental results, and

finally, we conclude the paper in Section 8.

2. Related Work

2.1. Deterioration Detection from Point Cloud

In typical methods for detecting deterioration from

point clouds, a wall surface with no deterioration is used

as a reference surface, and the difference between the ref-

erence surface and a point cloud is detected as deterio-

ration. However, there are many cases where drawings

are not available for old facilities, or where the drawings

differ from the actual conditions. In such cases, an esti-

mation of the reference surface is necessary.

For planar reference surfaces, many methods have been

studied. Zhang et al. [7] proposed a method for detect-

ing deterioration based on the difference between a point

cloud and the reference contours obtained from drawings

of reinforced concrete columns. Mizoguchi et al. [8] de-

tected delamination on planar walls of bridges from a

time series of point clouds. Their method estimated the

healthy surfaces from point clouds measured at different

times, aligned the point clouds, and detected the time-

series growth of delamination. Nespeca and De Luca [9]

detected deterioration by using the photogrammetrically

estimated planes as the reference plane. Seo et al. [10]

detected deterioration by extracting cross sections from

point clouds and comparing them with the cross sections

specified in the drawings. Some researchers have detected

deterioration of cylindrical walls. Wu et al. [11] assumed

the reference surface to be a cylinder and detected degra-

dation using the ratio of the surface areas of a point cloud

and the reference surface.

These methods assume that the wall surface was con-

structed exactly as a plane or cylinder. However, walls

with rotational shapes, such as blast furnaces and stor-

age tanks, are often not constructed exactly as specified in

the drawings, and the actual walls often contain undula-

tions and distortions caused by the construction process.

In such cases, assuming that the reference surface is an

exact plane or cylinder may lead to misidentification of

distortion during construction as deterioration.

Shinozaki et al. [4] assumed that the wall surface con-

structed as a rotational surface was a smooth surface at

the time of construction, rather than assuming it to be an

exact rotational surface. In this method, a B-spline sur-

face is fitted to a point cloud, and the difference between

the point cloud and the B-spline surface is considered to

be delamination or adhesion. They controlled the scale of

detectable deterioration by increasing or decreasing the

number of control points of the B-spline surface. How-

ever, in this method, the appropriate number of control

points must be determined experimentally by trial and er-

ror. They further tried to detect small cracks by increasing

the number of control points [5]. However, crack detec-

tion requires very dense point clouds, and it is difficult for

large facilities to acquire dense point clouds at a distance

from the scanner.

In this paper, we extend the method proposed by

Shinozaki et al. [4, 5] by using multi-resolution B-spline

surfaces. In our method, parameters for deterioration de-

tection are automatically selected by random forests [3].

Furthermore, we improve the detection performance by

combining multiscale 3D features with 2D features.

2.2. Deterioration Detection from 2D Image

While delamination and adhesion can be detected as

displacement from the reference surface, cracks are too

small to be detected stably as displacement. Therefore,

different methods are required for crack detection. One

promising approach is to generate 2D images from a point

cloud and solve the crack detection problem from the im-

ages. A dense point cloud acquired by a TLS can be pro-

jected onto a 2D plane to create an image. The reflection

intensity or RGB of each point is used as the pixel value

in the image. The reflection intensity value is calculated

from the intensity of the reflected laser beam and is output

from a typical laser scanner as an attribute of each point.

Deterioration detection from images has been studied

extensively. There are two main types of methods: classi-

cal image processing methods and deep learning methods.

In image processing methods, cracks are typically de-

tected by extracting edges using image filters and thresh-

olding. O’Byrne et al. [12] detected edges in a histogram-

flattened HDR image and segmented degraded areas.

Dapiton et al. [13] proposed a method for detecting de-

terioration on wall surfaces by combining pre-processing

and edge extraction.

A large number of deep learning methods based on con-

volutional neural networks (CNN) have been proposed. In

these methods, CNNs are trained using a large number of

images to detect and extract various objects from images.

Cracks can be detected by training a CNN using crack im-

ages. For example, Cha et al. [14] showed that CNNs can

be used to detect deterioration without being affected by

light or shadow.

Yamamoto et al. [6] showed that the reflectance inten-

sity of a point cloud is useful for detecting cracks. At

cracks, the reflection intensity significantly changes due

to the sudden change in the angle of laser irradiation to

the wall surface. They detected cracks from the reflection

intensity images using U-Net [15], which was trained us-
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(a) Delamination (b) Adhesion (c) Crack

Fig. 1. Deterioration types.

Fig. 2. Two detectors for large-scale and small-scale deteri-

oration.

ing crack images. However, this method could not achieve

a sufficiently high detection rate of about 50%.

In this paper, we improve the method proposed by

Yamamoto et al. [6] to increase the accuracy of crack de-

tection from reflection intensity images. Furthermore, we

detect deterioration at various scales without distinguish-

ing between cracks and delamination.

3. Overview

Deterioration of wall surfaces is classified into delami-

nation, adhesion, and cracks, as shown in Fig. 1.

Figure 2 shows the process of detecting deterioration.

This method uses different detectors to detect delamina-

tion or adhesion, where the scale is relatively large, and

cracks, where the scale is small. In machine learning,

random forests are used for detecting delamination and

adhesion, and U-Net is used for detecting cracks.

In our method, a reflection intensity image is generated

from a point cloud and is used for deterioration detection.

In this paper, the reflection intensity image is simply de-

noted as intensity image.

In Fig. 3, the two detectors are integrated to detect ad-

hesion, delamination, and cracks in a unified manner. In

the integrated detector, the output of the crack detector is

used as the input to random forests.

3.1. Delamination and Adhesion Detector

The detector for delamination and adhesion is shown

on the left side of Fig. 2.

Fig. 3. Integrated detector to detect deterioration at various

scales.

To avoid trial-and-error parameter tuning, 3D features

are calculated from the point cloud in a multiscale man-

ner. The required scales of features are automatically se-

lected from the multiscale features using random forests,

which is a commonly used supervised machine learning

method consisting of multiple decision trees [3].

The 3D features include the difference from the

B-spline surface, and the flatness and curvature calculated

using neighbor points. The difference feature is calculated

as the difference between the point cloud and the B-spline

surface fitted to a point cloud. Multiscale difference val-

ues are obtained from B-spline surfaces computed with

different numbers of control points. For flatness and cur-

vature, multiscale features are computed by changing the

neighborhood radius.

The reflection intensity at each point is also useful to

detect deterioration. In our method, the reflection inten-

sity and the edge-enhanced reflection intensity are option-

ally used as 2D features. Then, both multiscale 3D fea-

tures and 2D features are input to random forests to detect

deterioration.

3.2. Crack Detector

The crack detection procedure is shown on the right

side of Fig. 2. In our method, cracks are detected from

the intensity image generated from the point cloud.

For crack detection, we use a U-Net which is fine-tuned

using crack images. The U-Net is a deep learning model

for image segmentation [15]. In our previous work [6],

crack detection based on U-Net could not achieve a high

detection rate. In this paper, we show that pre-processing

of intensity images is important to improve the crack de-

tection using U-Net.

3.3. Integrated Deterioration Detector

The output of U-Net is a crack image. To integrate the

crack detector with the delamination and adhesion detec-

tor, the crack image generated by the U-Net is added to

the 2D features, as shown in Fig. 3. Then, the integrated

features are input to random forests for detecting delami-

nation, adhesion, and cracks in a unified manner.
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(a) Estimation of the center axis from point clouds

(b) Translation to cylindrical coordinates

Fig. 4. Mapping points onto the θ–z plane.

(a) Low resolution (b) Middle resolution (c) High resolution

Fig. 5. Multiscale differences calculated using B-spline sur-

faces with difference numbers of control points.

4. Detection of Delamination and Adhesion

As 3D features, the difference from the reference sur-

face, flatness, and curvature are used. The 3D features are

calculated at multiple scales so that deterioration at vari-

ous scales can be stably detected.

This research targets the detection of deterioration of

walls with rotational shapes. As shown in Fig. 4(a), a

rotational surface can be represented using the cylindrical

coordinate system with the z-axis as the central axis, r as

the radial direction, and θ as the circumferential direction.

The central axis can be obtained as a straight line passing

through the centers of the circular section points in the

height direction [4].

The points on the rotational surface are approximated

by a B-spline surface parameterized by z and θ in cylin-

drical coordinates, as shown in Fig. 4(b). The differences

are calculated by using the B-spline surface as the refer-

ence surface. As shown in Fig. 5, a B-spline surface with

a small number of control points is used to detect large-

scale deterioration, while a surface with a large number

of control points is used to detect small-scale deteriora-

tion. To obtain multiscale 3D difference features, B-spline

surfaces are computed using various numbers of control

Fig. 6. Sample wall with adhering substances.

Table 1. Sizes of adhesions.

1 2 3 4

Diameter 10 mm 15 mm 20 mm 25 mm

Thickness 5 mm 7.5 mm 10 mm 12.5 mm

(a) Difference (b) Flatness (c) Curvature

Fig. 7. 3D features calculated from a point cloud.

points.

The flatness and curvature features are computed at

each point using eigenvalues obtained by applying prin-

cipal component analysis to the neighbor points. When

eigenvalues are denoted as λ1, λ2, and λ3 (λ1 ≥ λ2 ≥ λ3),

the flatness feature is calculated as the minimum eigen-

value λ3 and the curvature feature as λ3/(λ1 +λ2 +λ3).
In order to calculate multiscale features, the flatness and

curvature features are calculated using multiple neighbor-

hood distances for neighbor points.

Figure 6 shows a cylindrical cement wall model with

various sizes of adhesions. The sizes of adhesions are

shown in Table 1. We captured a point cloud of this model

using a TLS, and calculated 3D features from the point

cloud. Fig. 7 shows the difference, flatness, and curvature

features.

Intensity images would also be effective in detecting

deterioration because the reflection intensity changes sig-

nificantly at the location of degradation, as shown in

Fig. 8. In our method, 2D features calculated from in-

tensity images can be optionally added to the random

forests input. The edge-enhanced intensity value is cal-

culated by applying the Canny filter to the intensity im-

age denoised with a median filter. In this paper, we use

two types of median filters. One is a typical 5× 5 me-

dian filter, which prevents the salt-and-pepper noise gen-

erated by missing points from being detected as edges.

The other is a median filter that finds the median from the

neighbor pixels other than the missing points. This filter

prevents valid points from being removed as noise, espe-

cially when many neighbor points are missing at positions
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(a) Intensity image (b) Edge-enhanced image

Fig. 8. 2D features obtained from intensity image.

(a) Camera image (b) Ground-truth

Fig. 9. The ground-truth of adhesions.

(a) Combined features (b) Difference feature

(c) Flatness feature (d) Curvature feature

Fig. 10. Adhesions detection using random forests.

far from the scanner. In our method, each point has two

edge-enhanced intensity values computed using two types

of median filters.

3D multi-scale features and optionally 2D features are

computed at each point and they are input to random

forests. The random forests are trained using the ground-

truth training data to determine whether each point is de-

terioration or not.

Figure 9 shows the ground-truth image of adhesions,

which was manually created. Fig. 10 shows regions de-

tected as deterioration using 3D multiscale features. Al-

though each of the difference, flatness, and curvature fea-

tures produced many false positive results for degradation,

the combination of all 3D features could correctly detect

deterioration regions.

In our method, many features are input in a multiscale

(a) Original intensity image (b) Median filtered image

(c) Pre-processed image

Fig. 11. Pre-processed intensity image.

manner, and random forests automatically select only ef-

fective features according to the training data. We will

discuss which of the input features are effective in a later

section.

5. Crack Detection from Intensity Image

In our previous work [6], a U-Net model pre-trained

using ImageNet was used for crack detection. We fine-

tuned the pre-trained model using 9,603 RGB images

of cracks, which were used in other crack detection re-

searches [16–20]. However, in our experiments, this fine-

tuned U-Net model could not achieve a high crack detec-

tion rate when applied to intensity images generated from

point clouds.

We consider that there are two possible reasons for this

problem: (1) the cracks could not be detected due to stains

and color irregularities on the wall surfaces, and (2) since

the pixels of cracks tend to be discontinuous in the inten-

sity image generated from a point cloud, the U-Net trained

using camera images did not adapt to the cracks in the in-

tensity images.

To solve these problems, the intensity image is pre-

processed to remove noise such as color irregularities. In

addition, U-Net is further fine-tuned using intensity im-

ages generated from point clouds.

Let Io be the original intensity image, Im be the im-

age obtained by applying a 5× 5 median filter to Io, and

Io(i, j) and Im(i, j) be the pixel values at (i, j). As shown

in Fig. 11(b), by applying the median filter to the intensity

image, discrete crack pixels are smoothed and blurred, but

stains and color irregularities tend to remain unchanged.

Therefore, stains and color irregularities are reduced and

cracks are sharpened by applying the following equation
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(a) Previous method [6]

(b) Our method

Fig. 12. Detected cracks from intensity image.

Table 2. Detection rates for cracks.

Detection rate

Previous method [6] 55%

Our method 91%

to the intensity image.

In(i, j) =
1

2
×

Io(i, j)

Im(i, j)
×255. . . . . . . . (1)

An example of the result is shown in Fig. 11(c).

To train U-Net to recognize cracks in intensity images,

we created a training dataset by extracting cracks from

400 intensity images, which were cropped from point

clouds of furnace walls. The training dataset was created

by manually drawing line segments on cracks in the in-

tensity images using a drawing tool. The training dataset

was used for fine-tuning the U-Net.

Figure 12 shows the cracks detected by our method and

the previous method [6]. The detection rates are shown in

Table 2. In this evaluation, a continuous unbranched line

segment was counted as one crack. The detection rate is

defined as the ratio of the number of detected cracks to the

total number of cracks that can be visually observed. Our

method could achieve significantly better detection rates.

6. Integrated Deterioration Detector

In Sections 4 and 5, delamination and cracks are de-

tected using two independent detectors, which have to be

trained using different training data. One of the two de-

tectors is suitable for detecting relatively large deteriora-

tion such as delamination and adhesion, while the other is

suitable for detecting small deterioration such as cracks.

This is because the crack detector removes the delami-

nated area as noise and cannot stably detect delamination

Fig. 13. Disappearance of delamination in the pre-process

of crack detection.

Table 3. The numbers of features for the integrated detector.

Feature type Number of features

3D

features

Difference from reference 10

Flatness 18

Curvature 18

2D

features

Intensity image 1

Edge-enhanced image 2

Crack image 1

as shown in Fig. 13. Similarly, small cracks cannot be

stably detected using the detector for delamination and

adhesion.

However, in actual wall surfaces, delamination often

grows gradually from cracks, and it is difficult to strictly

distinguish between cracks and delamination. Therefore,

we introduce an integrated detector for all of delamina-

tion, adhesion, and cracks.

Since the crack detector detects the pixels of cracks in

the intensity image, the output of the crack detector can be

regarded as a 2D feature of each point, as shown in Fig. 3.

By adding the output of the crack detector to the input of

the random forests, features for delamination, adhesion,

and cracks can be integrated. In the integrated detector,

the 2D features consist of an intensity image, two edge-

detected images, and a crack image.

In the integrated detector, the differences from the

reference surfaces are computed using B-spline surfaces

with different numbers of control points. For multiscale

difference features, any combinations of resolutions can

be selected for B-spline surfaces, depending on the scales

of deterioration to be detected. In this paper, control

points in the u- and v-directions are selected in 10 differ-

ent resolutions, which include 10× 10, 13× 13, 24× 24,

45 × 45, 10 × 13, 13 × 10, 13 × 24, 24 × 13, 24 × 45,

and 45× 24. Flatness and curvature are also calculated

in a multiscale manner by changing the neighborhood

distances. In this paper, a total of 18 features are cal-

culated for flatness and curvature using distances every

10 mm from 10 to 100 mm and every 50 mm from 100 to

500 mm, respectively.

Table 3 shows the list of features used for the inte-

grated detector. The feature vector of each point consists

of 46 multiscale 3D features and four 2D features for a

total of 50 features.
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(a) Ground-truth

(b) Our method

Fig. 14. Detection of deteriorations on the blast furnace wall.

7. Experimental Results

In our experiments, we used point clouds of a blast fur-

nace measured at 12 locations. The number of points

was totally about 450 million. The laser scanner used

was Leica ScanStation C10. The point cloud density was

6.3 mm at 10 m, and approximately 40 million points

were acquired in a single scan. Since the various equip-

ment was installed inside the furnace, point clouds were

acquired at 12 locations using the laser scanner on the

floor so that occluded regions on the furnace wall were

reduced as much as possible.

To create the ground-truth dataset, we converted each

point cloud into an intensity image and manually painted

the deteriorated regions red using a painting tool. We

note that we used both the intensity image and the 3D

rendering of the point cloud to visually find deteriora-

tion regions. Finally, we classified each point as either

“deteriorated” or “sound” without distinguishing between

delamination, adhesion, and cracks. An example of the

ground-truth data is shown in Fig. 14(a).

For the integrated detector, 80% of the ground-truth

data was used as training data and 20% as test data. After

training the integrated detector, deteriorated regions were

detected from the test data. Fig. 14(b) shows the dete-

riorated regions detected from the point cloud shown in

Fig. 14(a). This result shows that the integrated detector

could detect almost the same deterioration as the ground-

truth data.

For quantitative evaluation, precision and recall were

Table 4. Detection rate of deteriorations.

Precision Recall F-score

Integrated detector 92% 88% 90%

Multiscale differences 46% 73% 56%

evaluated by comparing the ground-truth data and the

detected deterioration. For the evaluation of precision,

the points detected as deteriorated were considered to

be correct if there were the ground-truth data within

one-neighbor in the intensity image. For the evalua-

tion of recall, the ground-truth points were considered to

be detected if deterioration points were detected within

one-neighbor. The F-value was also calculated as the

harmonic mean of precision and recall. The results are

shown in Table 4. The F-value of 90% indicates that the

integrated detector was able to achieve a very high deteri-

oration detection rate.

For comparison, deterioration was detected from the

same point clouds using the method proposed in [4, 5].

In this method, a B-spline surface was used as a reference

surface, and deterioration was detected using the differ-

ence between the reference surface and the point cloud.

They detected large-scale deterioration and small-scale

cracks separately, but we extended their method in a mul-

tiscale manner and detected deterioration at various scales

using multiscale differences. This is because the origi-

nal method requires experimental determination of scale

parameters depending on the scale of deterioration and
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Fig. 15. Ranking of the importance of features.

cannot be compared with the proposed method under the

same conditions. Therefore, we introduced multi-scale

features to avoid the experimental parameter adjustment.

The result is shown in Table 4. The F-value was 56%,

and their method could not achieve a high recognition

rate. Precision is low at 46%, and this result indicates

that a large number of false deterioration points were de-

tected. Compared with this result, our integrated detector

could significantly reduce the false-positives and improve

the deterioration detection rate.

Random forests can compute the contribution of each

feature as feature importance. We calculated feature im-

portance to investigate effective features among the 50 di-

mensional features of the integrated detector. Fig. 15

shows the ranking of important features. While the im-

portance of the crack image was very high, the 3D and

2D features also contributed to the detection of deteriora-

tion. Our method computed 3D features at various scales

without considering the sizes of deterioration, but the in-

tegrated detector could automatically select scales of 3D

features that were effective in detecting deterioration in

the example point clouds.

In summary, the integrated detector has some advan-

tages compared with the methods shown in Fig. 1. First,

the integrated deterioration detector can achieve very

high detection rates compared with conventional meth-

ods [4, 5]. The feature importance in Fig. 15 shows that

the integrated detector works effectively by concatenat-

ing features from the two detectors. Second, while it

is difficult to strictly distinguish between delamination

and cracks when creating training data from actual point

clouds, the integrated deterioration detector does not re-

quire delamination and cracks to be labeled separately.

8. Conclusion

This paper proposed methods for stably detecting de-

lamination, adhesion, and cracks. First, we proposed a

method for detecting delamination and adhesion using 3D

multiscale features and 2D features. Then, we proposed

a method for detecting cracks from pre-processed inten-

sity images using U-Net, which was fine-tuned by inten-

sity images. Finally, we proposed the integrated detec-

tor to detect delamination, adhesion, and cracks in a uni-

fied manner. We evaluated the integrated detector using

point clouds of a blast furnace. Our experimental results

showed that our method could successfully detect deteri-

oration on walls.

We believe that our method could be applied to various

facilities, such as storage tanks with rotational shapes. We

would like to apply our methods to such facilities by in-

vestigating their deterioration modes if point clouds are

available. Our method requires a lot of training data, but

it is time-consuming to create training datasets. We would

like to investigate methods to create training data easily or

methods to train the detector with less training data.
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