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Abstract

In this paper, we propose a constrained least squares
approach for stably computing Laplacian deformation with
strict positional constraints. In the existing work on Lapla-
cian deformation, strict positional constraints are described
using large values of least squares weights, which often
cause numerical problems when Laplacians are described
using cotangent weights. In our method, we describe strict
positional constraints as hard constraints. We solve the
combination of hard and soft constraints by constructing
a typical least squares matrix form using QR decomposi-
tion. In addition, our method can manage shape deforma-
tion under over-constraints, such as redundant and conflict-
ing constraints. Our framework achieves excellent perfor-
mance for interactive deformation of mesh models.

1 Introduction

Mesh deformation is useful in a variety of applications
in computer graphics and computer-aided design. In re-
cent years many discrete deformation techniques based on
Laplacian mesh representation have been published [20].
They can support interactive work by encoding differential
properties and positional constraints in a linear system.

In most existing work [17, 21], Laplacian operators are
described by the uniform weighting method. This approach
is numerically stable, but may produce distorted shapes
when triangles in the mesh are not uniformly constructed.
Meyer et al. [16] showed that the mean curvature can
be approximated using Laplacians with cotangent weights.
Their work illustrates that the uniform weights preserve the
mean curvature at each vertex only when the mesh consists
of conformal and uniform triangles. Obviously the cotan-
gent weights are better than the uniform weights. However,
the cotangent weights may cause numerical problems be-
cause typical linear solvers fail to solve linear systems for
badly shaped meshes. To solve Laplacians with cotangent

weights, Botsch and Kobbelt [5] remeshed the mesh mod-
els so that the Voronoi area was nearly equal at each vertex.
This approach is useful, but it is difficult to faithfully pre-
serve the details of shapes by automatic remeshing.

We propose a novel constrained least-squares approach
in this paper. This method allows us to stably solve a linear
system of Laplacians defined by cotangent weights with-
out remeshing. In our method, positional constraints are
described as hard constraints. Then a combination of hard
and soft constraints is converted to a typical least squares
system using QR decomposition. This method computes
vertex positions that preserve differential properties stably
and efficiently.

A well-known problem of hard constraints is over-
constraints. If over-constraints are involved, the solver halts
the computation. We show how our framework resolves
over-constrained situations, which include redundant and
conflicting constraints.

In addition to stability, our method satisfies positional
constraints precisely. In the existing methods, posi-
tional constraints are approximately solved by placing large
weights in the least squares system. As the values of
weights become increasingly large, the solver satisfies posi-
tional constraints more strictly, but it becomes numerically
more unstable. satisfied.

In the following section, we review the related work on
3D shape deformation. In Section 3, we describe our mesh
deformation framework with hard constraints. In Section 4,
we evaluate the stability and performance of the proposed
method through experiments. We conclude the paper in
Section 5.

2 Related Work

Interactive mesh editing techniques have been inten-
sively studied [20]. Such research aims to develop model-
ing tools for intuitively modifying free-form surfaces while
preserving the geometric details.



In typical interactive mesh editing, the user first selects
the region to be fixed, and then the vertices to be used as
the manipulation handle. When the user drags the positions
of handle vertices on the screen, the surface is deformed
according to the handle manipulation.

There are several types of approach for mesh editing:
free-from deformation (FFD), multiresolution mesh editing,
and partial differential equation (PDE)-based mesh editing.

FFD methods are very popular approaches. They modify
shapes implicitly by deforming 3D space in which objects
are located [6, 15, 19]. However, it is difficult to manage
geometric constraints defined on vertices, edges and faces,
because FFD does not directly work on geometric shapes.

Multiresolution approaches [8, 10, 11, 12, 27] decom-
pose a surface into a base mesh and several levels of de-
tails. Mesh editing can be performed at various resolutions.
Botsch et al. [4, 5] applied this technique to interactive
mesh editing. A mesh model is decomposed into two-level
resolutions and the smooth base is interactively deformed
using energy minimization techniques. Geometric details
are then recovered on the modified smooth shape.

PDE-based approaches directly deform the original
mesh so that the differential properties are preserved. The
positions of the handle and fixed vertices and the differen-
tial properties of the surface are treated as boundary con-
ditions during the editing processes. Laplacians are most
commonly used to represent differential properties.

PDE-based approaches are categorized as non-linear and
linear methods. Non-linear methods solve Laplacian or
Poisson equations using non-linear iterative solvers [2, 7,
18, 22, 24]. These methods produce fair surfaces, but they
are time-consuming and it is difficult to deform shapes in-
teractively.

Linear PDE-based approaches encode Laplacians and
positional constraints in a linear system and obtain the de-
formed shapes by solving the linear system [4, 21]. A dis-
crete Laplacian is defined at each vertex by the weighted
sum of difference vectors between the vertex and its ad-
jacent neighbors. When the weights in the sum are rep-
resented using the Voronoi area and cotangents [16], the
Laplacian vector approximates the mean curvature at the
vertex.

Yu et al. [25] introduced a similar technique called Pois-
son editing, which manipulates the gradients of the coordi-
nate functions(x, y, z) of the mesh. The vertex positions
are calculated by solving discrete Poisson equations. Zhou
et al. [26] proposed volumetric Laplacians to preserve the
volumetric properties for large deformations. Nealen et al.
[17] introduced a sketch-based interface on the Laplacian
framework.

Since Laplacian vectors are defined in the local coordi-
nate systems [1, 21], one or more vertices must be specified
in the global coordinate system to determine all vertex posi-

tions. Therefore, the total number of Laplacian vectors and
positional constraints is greater than that of the unknowns.
Sorkine et al. [21] solved this over-constrained problem ap-
proximately as a least squares system.

Several authors have discussed methods for rotating
Laplacian vectors according to the deformation of surfaces.
Lipman et al. [13] estimated the local rotations on the
underlying smooth surface. Sorkine et al. [21] approxi-
mated rotations as linear forms and solves them using the
least squares method. Lipman et al. [14] also proposed
a rotation-invariant method. They encoded rotations and
positions in two separate linear systems, in which the lo-
cal frame on each vertex was represented as the differences
between the local frame and adjacent ones, and the vertex
positions as relative coordinates on the local frames.

3 Framework with Hard Constraints

3.1 Preliminaries

Let M = (V,E, F ) be a given triangular mesh withn
vertices. V , E and F are the set of vertices, edges and
faces, respectively. Each vertex has a three-dimensional
coordinatepi = (pxi,pyi,pzi). A discrete Laplacian
δi = (δxi, δyi, δzi) is defined as:

δi =
∑

j∈N(i)

wij(pi − pj), (1)

whereN(i) = {j|(i, j) ∈ E} is the set of immediate neigh-
bors of vertexi.

We can represent (1) as a matrix equation:

Lp = δ. (2)

We can describe positional constraints as linear equations.
Constraints on the position of a vertex, a point on an edge
and a point on a face can be shown in (3), (4) and (5), re-
spectively:

pi = u (3)

tpi + (1 − t)pj = u′ (4)

spi + tpj + (1 − s − t)pk = u′′, (5)

whereu, u′, u′′ ∈ R3 are certain constant positions.
In addition, we introduce vectorial constraints as fol-

lows:

pi − pj = v, (6)

wherev ∈ R3 is a certain constant vector. This type of
equation constrains the relative positions of vertices. For
example, when the relative positions are defined on edges



of a triangle, the mesh is deformed so that the triangle has
the same shape.

When all of these constraints are defined as soft con-
straints, they are solved by a least squares method, such as:

AT Ax = AT c, (7)

wherex = p, A =

[
L
...

]
andc =

[
δ
...

]
. The positions of the

handle vertices are contained in the vectorc.
SinceAT A is a sparse symmetrical positive definite ma-

trix, (7) can be very efficiently solved using Cholesky fac-
torization [3, 20, 23]. After the matrix is factorized once,
x is repeatedly calculated according to the positions of the
handle vertices.

The method for determiningwij is important for numer-
ical stability and quality. A simple method is the following
uniform weights approach:

wij =
1

|N(i)|
. (8)

When badly shaped long triangles do not exist and the sizes
of triangles are nearly equal, the uniform weights work well.
However, this weighting method does not produce good re-
sults in general cases.

The following cotangent weights approach is a better ap-
proximation, becauseδi approximates the local normal di-
rection and the local mean curvature [22]:

wij =
1

2Area(i)
(cotαij + cot βij), (9)

whereArea(i) is the Voronoi area of a vertexi ∈ V , and
αij andβij are the angles opposite to edge(i, j)[16].

However, when the mesh contains triangles that are too
long or too small, Laplacians constructed by cotangent
weights may cause numerical problems. Figure 2 shows
such an example. Since this mesh has many badly shaped
triangles, the linear solver fails to calculate deformed shapes
that preserve Laplacians with cotangent weights. We need
to remove this side effect of cotangent weights. One solu-
tion is to remesh models so that each triangle has the same
Voronoi area [5]. However, remeshing is not always useful,
because it may change the details of shapes.

Therefore, we introduce hard constraints in the de-
formation framework and solve them using the equality-
constrained least squares method. We observe that the
reason why this instability occurs is that relatively large
weights need to be specified on positional constraints. By
treating them as hard constraints, the numerical calculation
is stabilized. In addition, since hard constraints are pre-
cisely satisfied, our framework is suitable for applications
in which positional constraints should be precisely satisfied.

(a) (b)

(c) (d)

Figure 1. Comparison of weighting. (a,b) The
original model subdivided unsymmetrically.
(c) An example of uniform weighting. (d) An
example of cotangent weighting.

Figure 2. An example of a mesh that causes
numerical problems.



3.2 Constrained Least Squares

We define hard constraints as follows:

Bx = d. (10)

Our mesh deformation framework with hard constraints
can be formalized as (11) and can be solved using the
equality-constrained least squares method [9].

min
Bx=d

‖Ax − c‖2, (11)

whereA ∈ Rl×n, B ∈ Rm×n, c ∈ Rl, d ∈ Rm, m ≤ n ≤
l.

For clarity, we assume that bothA andB have full rank.
ThenBT is decomposed by QR factorization [9] as follows:

BT = QR, (12)

whereQ ∈ Rn×n is an orthogonal matrix, andR ∈ Rn×m

is an upper triangular matrix.
We rewrite these as follows:

Q =
[
Q1 Q2

]
m n − m

(13)

R =
[
R1

0

]
m

n − m
(14)

QT x =
[
y
z

] m
n − m

.
(15)

Thus, (11) is expressed in the following form:

min
RT

1 y=d
‖AQ1y + AQ2z− c‖2. (16)

Sincey is determined by the constraint equationRT
1 y = d,

z is obtained by solving the following unconstrained least-
squares problem:

min
z

‖AQ2z− (c− AQ1y)‖2. (17)

By solving this least squares system, we obtain:

(AQ2)T AQ2z = (AQ2)T (c− AQ1y). (18)

Finally, we can obtainx as follows:

x = Q

[
y
z

]
. (19)

We can solve (18) very efficiently using Cholesky factor-
ization, because(AQ2)T (AQ2) is a symmetrical positive
definite matrix and its size is smaller thanA.

Figure 3. An example showing the detection
of rank deficiency in the matrix. After the 3rd
column is processed, the diagonal and lower
elements in the 4th column become zero, and
then all the elements in the 4th Householder
vector become zero, which implies rank defi-
ciency.

3.3 Conflictions of Constraints

In our framework, hard constraints are strictly satisfied
in the solutions. Therefore, if conflicting or redundant con-
straints are involved, they lead to the rank deficiency inB,
and the solver halts the computation.

We can resolve both redundant and conflicting con-
straints by detecting and removing the deficiency of the rank
during the processes of QR decomposition.

We compute QR decompositionBT = QR by House-
holder factorization [9]. Each column ofBT represents a
hard constraint. In the process of Householder factoriza-
tion, each column is processed sequentially. Vertices have
n degrees of freedom (DoF) at the beginning of decomposi-
tion, and they haven − i DoF when the columni has been
processed. IfBT has no redundant constraint, vertices have
n − m DoF after QR decomposition.

If column j in BT is a redundant constraint, we can-
not decrease the degree of freedom by processing column
j, because the diagonal and lower elements of columnj are
equal to zero after the previousj−1 columns are processed,
as shown in Figure 3. Therefore, we can detect the redun-
dant constraints.

After the column of a redundant constraint is detected,
it is skipped and then the next column is processed. By
removing all the redundant constraints, a unique solution is
determined using the unconstrained least squares method.

Then (13), (14) and (15) are substituted with (20), (21)



and (22):

Q =
[
Q1 Q2

]
r n − r

(20)

R =
[
R1

O

]
r

n − r
(21)

QT x =
[
y
z

] r
n − r

,
(22)

wherer is the rank of the hard constraint matrixB. The
number of skipped constraints is shown asn − r.

After detecting all redundant constraints, we examine
whether each constraint satisfies the solution. If a redun-
dant constraint is consistent with the solution, it is ignored.
If it conflicts with the solution, we can send out a warning
message to correct the specification.

4 Experimental Results

In this section, we show some results of deformation
based on the equality-constrained least squares method.

Figure 4 shows examples of deformed shapes. This
mesh has badly shaped triangles, as shown in Figure 2.
Our method can produce good results using cotangent
weights, because we can represent Laplacians using cotan-
gent weights, even when the mesh consists of non-uniform
triangles.

Figure 5 shows sample models that are commonly used
for evaluation in computer graphics. We solve the linear
systems constructed by these models using TAUCS [23],
which is a well-known solver of Cholesky factorization.

Table 1 shows the numerical stability. When all con-
strains are treated as soft constraints and their matrix is con-
structed using cotangent weights, the solver fails to calcu-
late the Bunny and Dragon models. Our method can suc-
cessfully calculate both cases.

Figure 6 shows the mesh model with conflicting con-
straints. In Figure 6b, all constraints are described as soft
constraints and a compromised shape is generated. In this
case, it is difficult to detect which constraints are conflict-
ing. Figure 6c shows that our method resolves the conflict-
ing constraints by detecting and removing them.

Our method consists of three phases: set-up, precompu-
tation and solution. In the set-up phase, we construct the
matrices for hard and soft constraints. In the precomputa-
tion phase, we obtain the least squares systems by QR de-
composition and factorize them. In the solution phase, we
compute the positions of vertices. After the matrix is factor-
ized once in the set-up and precomputation phases, the ver-
tex positions are repeatedly calculated in the time spent on
the solution phase. A longer computation time is required

(a) (b)

(c) (d)

Figure 4. Examples of the opening and clos-
ing of the mouth of a dragon. The red ar-
eas consist of constrained vertices: (a) is the
original shape and (b), (c) and (d) are varia-
tions of deformation.

in the set-up and solution phases than in the solution phase.
Figure 7 compares the total time for the first two phases.

The calculation time was measured on a laptop computer
with 2.0-GHz Pentium M CPU, with 1.0 GB of RAM and
Windows OS. The result shows that our method with hard
and soft constraints is as fast as the method with only soft
constraints.

It is possible to add various types of constraints, as well
as vertex positions. In Figure 10 and Figure 11, we add vec-
torial constraints that fix the relative positions of vertices.
These constraints are strictly satisfied in our framework.
Figure 9 shows the computation time for these cases. When
we constrain many relative positions, the computation time
for calculating the least squares matrix(AQ2)T (AQ2) in-
creases, because the matrixAQ2 becomes less sparse. In
the current implementation, we deal withAQ2 on the as-
sumption that it is sparse matrix, which causes inefficiency.
Thus, there is room for improving the computation times.

5 Conclusion

In this paper, we show a constrained least squares ap-
proach for stably computing Laplacian deformation with
strict positional constraints. Our experimental results for
mesh models, which are commonly used for evaluation in
the computer graphics community, show that our method is



Table 1. Comparison of stability against numerical problems with some samples. ( × indicates that
numerical problems arise.)

Only soft constraints Soft & hard constraints
using constrained least squares

Weighting Uniform Cotangent Uniform Cotangent

(a)Armadillo (Figure 5c) © © © ©
(b)Bunny (Figure 5d) © × © ©
(c)Dragon (Figure 4) © × © ©

(a) (b)

(c) (d)

Figure 5. Examples of deformed models. (a) and (b) are deformed to (c) and (d), respectively.



(a) (b) (c)

Conflicting constraints Merged constraints Removed constraints

Figure 6. Management of conflicting constraints. The red areas consist of constrained vertices.
(a) The original model and constraints including conflicts. (b) A result for the case in which all
constraints are soft. (c) A result for the case in which conflicting constraints are managed.

Figure 7. Comparison of precomputation time for different methods. In the case of only soft con-
straints, we convert hard constraints to soft constraints. All the soft constraints are Laplacian coor-
dinates, and all the hard constraints are to fix vertex positions.



Figure 8. Breakdown of precomputation time.
All hard constraints are to fix vertex posi-
tions. Preparation is to solve RT

1 y = d and
to compute c − AQ1y and AQ2.

Figure 9. Breakdown of precomputation time
for various hard constraints. Preparation is
to solve RT

1 y = d and to compute c − AQ1y
and AQ2.



(a) (b)

Figure 10. An example of vector-preserved
deformation. (a) An original mesh. The red
areas consist of constrained vertices. The
white arrow is a constrained vector. (b) A de-
formed mesh. The relative position between
the mouth and the nose is preserved.

(a) (b)

Figure 11. An example of feature-preserved
deformation. (a) An original mesh. The red
areas consist of constrained vertices. The
white areas consist of vertices constrained
by each other. (b) A deformed mesh. The left
eye is preserved in its original shape and the
right eye is stretched.

more stable than existing least-squares methods. In addi-
tion, we show a method for resolving redundant and con-
flicting constraints. The performance of our method is as
good as that of the method that manages only soft con-
straints. Since our method can strictly satisfy hard con-
straints, it can be applied to applications that require precise
positional constraints.

In future work, we need to improve the performance
when many vectorial constraints are added. Since our im-
plementation is not optimized yet, we will be able to tune
the solver for QR decomposition and matrix multiplica-
tions.
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tion signal processing for meshes. InSIGGRAPH ’99:
Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 325–334. ACM
Press/Addison-Wesley Publishing Co., 1999.

[11] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. In
SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages
105–114. ACM Press, 1998.

[12] S. Lee. Interactive multiresolution editing of arbitrary
meshes.Comput. Graph. Forum, 18(3):73–82, 1999.

[13] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl,
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