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ABSTRACT 
    In this paper, we discuss methods to efficiently 
render stereoscopic scenes of large-scale point-
clouds on inexpensive VR systems. Recently, 
terrestrial laser scanners are significantly improved, 
and they can easily capture tens of millions points in 
a short time from large fields, such as engineering 
plants. If 3D stereoscopic scenes of large-scale 
point-clouds could be easily rendered using 
inexpensive devices, they might be involved in 
casual product development phases. However, it is 
difficult to render a huge number of points using 
common PCs, because VR systems require high 
frame rates to avoid VR sickness. To solve this 
problem, we introduce an efficient culling method 
for large-scale point-clouds. In our method, we 
project all points onto angle-space panoramic images, 
whose axes are the azimuth and elevation angles of 
head directions. Then we eliminate occluded and 
redundant points according to the resolutions of 
devices. Once visible points are selected, they can be 
rendered in high frame rates. Visible points are 
updated when the user stays at a certain position to 
observe target objects. Since points are processed on 
image space in our method, preprocessing is very 
fast. In our experiments, our method could render 
stereoscopic views of large-scale point-clouds in 
high frame rates. 

1. INTRODUCTION 
 Virtual reality (VR) is useful in a variety of 
phases in product development. VR is a technique to 
create an immersive virtual environment as if the 
user were in the scene. In design phases, VR can be 
used to confirm styling by placing products in 
realistic usage scenes. Simulation results can also be 
evaluated three-dimensionally in analysis phases. 
VR is also effective in process planning phases to 
instruct operations or to confirm manufacturability in 
virtual production lines.  
 Recently inexpensive stereoscopic devices were 
developed for computer games. These devices can be 
potentially used in a variety of product development 
phases [1]. However, it is time-consuming to create 
3D virtual scenes if the user has to create many 3D 
models. This problem prevents us to utilize virtual 
environment in casual tasks.  

Point-based models are useful to easily and 
rapidly create virtual environment. Recently, 
terrestrial laser scanners (TLS) are significantly 
improved, and they can easily capture a huge number 
of points in a short time from large fields, such as 
engineering plants. The state-of-the-art laser 
scanners can capture one million points in a second 
within one hundred meters.  



Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina  
IDETC2016-59756: 2  

    When point-clouds are densely captured, they 
can be used to render realistic as-is scenes. If 3D 
stereoscopic scenes of a huge number of points could 
be easily rendered on inexpensive devices, they 
might be involved in casual product development 
phases.  
 However, VR systems require high frame rates for 
rendering scenes to avoid VR sickness. It is often 
pointed out that frame rates for VR should be more 
than 75 fps. In existing methods, it is not easy to 
render tens or hundreds millions points captured by 
TLSs in high frame rates on common PCs. An easy 
way to render a huge number of points is to reduce 
the number of rendered points, but this approach 
pays the penalty of missing details.  
 So far, point-based rendering has been 
intensively studied in the field of computer graphics 
[2-4]. In typical methods, 3D space is subdivided 
into hierarchical sub-spaces to efficiently render 
point-clouds in a multiresolution manner [5-15]. 
Rusinkiewicz et al. [10] proposed a fast rendering 
method for point-clouds based on level-of-details 
and quantization of coordinates. Dachsacher et al. 
[11] extended this method using the sequential point 
trees (SPT). Okamoto et al. [12] clustered points 
using the view frustum and depth determination. 
Pajarola, et al. [13] proposed out-of-core multi-
resolution rendering for point-clouds. Wimmer et al. 
[14] developed Instant Points to reduce preprocess-
ing time.  
   However, the frame rates of these methods are 
not very high. In most cases, they compromise the 
quality of rendering while objects are moving, and 
then they refine details when objects stop moving. 
Unfortunately, this approach is not suitable for 
stereoscopic devices, because head directions are 
always changing in VR environment. Kreylos, et al. 
[15] realized real-time rendering of large-scale point-
clouds using an out-of-core view-dependent 
multiresolution rendering scheme. However, their 
method was developed on expensive high-end VR 
systems. 
 In this paper, we propose a method for rendering 
a huge number of points on common PCs. Since our 
method does not construct hierarchical structure of 
points, preprocessing is very fast. We realize high 

 
Figure 1. Head mounted display 

(Oculus Rift DK2) 
 

 
Figure 2. Distorted parallax images on HMD 

 

 
Figure 3. Process of our method 
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frame rates for rendering by eliminating invisible 
points and adjusting the resolution of points to the 
resolution of devices. We show that invisible points 
and redundant points can be easily and quickly 
eliminated on angle-space panoramic depth images, 
whose axes are the azimuth and elevation angles of 
head directions.  

As an inexpensive device, we use the Oculus Rift 
DK2 (Figure. 1), which was developed by Oculus 
VR Inc. [16]. The resolution of this device is 1920 x 
1080. The head tracking system traces head 
directions using a gyroscope, and the position 
tracking system traces the head position using an 
infrared camera. The device realizes a wide viewing 
angle by distorting parallax images using two fish-
eye lenses. Figure 2 shows parallax images displayed 
on the screen of an Oculus HMD. 

Figure 3 shows a process of our method. First 
visible points are selected from point-clouds. Then 
selected points are transferred to a stereoscopic 
device, and they are rendered according to head 
directions in real-time. In this paper, we define frame 
rates that are equal or higher than 75 fps as “real-
time” rendering. 

When the user moves forward or backward and 
changes the head position, visible points are 
recalculated and updated. This process is done in 
background processes while points are rendered. In 
the phase for selecting visible points, we transform 
coordinates of point-clouds to the spherical 
coordinate system, whose origin is the head position. 
Then, we create a panoramic image in angle space, 
as shown in Figure 4. The resolution of panoramic 
images is determined so that the resolution is equal 
or higher than the one of the stereoscopic device. 
When multiple points are projected on the same 
pixel, redundant points are eliminated. When the 
density of points is smaller than the resolution of the 
panoramic image, unfilled regions may be generated 
on rendered images. Then we estimate surfaces and 
resample points in unfilled regions. 

2. GENERATION OF PANORAMIC IMAGE 

2.1. Panoramic image 
In our method, point-clouds are converted to a 

panoramic image in angle space. We define a local 

spherical coordinate system, in which the origin is 
the head position. Then each coordinate (x, y, z) in 
point-clouds is converted into a spherical coordinate 
(θ, φ, r), where θ is the elevation angle, φ is the 
azimuth angel, and r is the distance from the origin. 
A panoramic image (Figure 4) is generated by 
quantizing (θ, φ) and describing RGB colors of 
points at each pixel. In this paper, we generate 
panoramic images so that the resolution is equal or 
higher than the one of the stereoscopic device.  

When the density of points is higher than the 
resolution of the panoramic image, multiple points 
are projected on the same pixel. Then the point with 
the smallest depth is maintained at the pixel. 

 

 
Figure 4. Panoramic image generated by points 

2.2. Resample points in unfilled regions 
When the resolution of points is less than the one 

of panoramic images, unfilled regions may be 
generated on panoramic images, as shown in Figure 
5. In this figure, any points are not projected in white 
regions. Unfilled regions are often generated on 
distant objects or inclined surfaces, on which point 
density becomes sparse.  

Unfilled regions are also generated when laser 
beams are occluded by other objects. However, it is 
difficult to estimate arbitrary occluded surfaces. In 
this paper, we fill only planar regions by resampling 
points on planes. 

We first fill salt-and-pepper gaps simply by 
interpolating the depths as the average of 3x3 
neighbor points on the panoramic image. In the next 
step, we detect unfilled regions and select their 
boundary points. When the boundary points fit a 
plane approximately, the unfilled region is regarded 
as a continuous plane. Then we resample points in 
each unfilled region by calculating coordinates on 
the plane. In addition, colors in the unfilled region 
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are calculated as the average of two color values, 
which are interpolated linearly in each of the two 

directions, lateral and longitudinal on the panoramic 
image, as shown in Figure 6.  

Figure 7 shows an interpolated result, in which 
resampled points fill planar unfilled regions. 

3. EXTRACTING VISIBLE POINTS 

3.1. Visible points from the fixed eye 
To render stereoscopic views on a HMD, two 

parallax images have to be generated. Since it is 
time-consuming to separately calculate visible points 

from two eyes, we select visible points only from 

one eye, and then select additional points that are 
visible from the other eye. 

To reduce computation time, we suppose that 
one eye is fixed, and the other eye moves around. In 
Figure 8(a), the head direction of the user faces 
forward, and in Figure 8(b), the head direction is 
turned to the right. In this paper, we suppose that the 
position of the moving eye moves horizontally. Then, 
visible points from the fixed eye can be simply 
obtained as a panoramic image, because the fixed 
eye is defined as the origin of the spherical 
coordinate system. 

3.2. Detection of boundary points 
When visible points from the fixed eye are 

obtained as a panoramic image, continuous regions 
can be detected from the panoramic image. Figure 9 
shows two adjacent points on a panoramic image. 
When two points P1 and P2 are on the same surface, 
they approximately satisfies: 

     , 
(1) 

(a) Looking forward  (b) Looking right direction 
Figure 8. Fixed eye and moving eye 

 

 
Figure 9. Two adjacent points on a surface 

 
Figure 5. Unfilled regions on panoramic image 

 
Figure 6. Linear interpolation in two directions on 

the panoramic image. 
 

 
Figure 7. Panoramic image filled by additional points 
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where Δ" is the angular resolution of points, and n 
is the normal vector of a surface.  
   Since it is time-consuming to estimate normal 
vectors at all points, we suppose that the angle 
between OP1 and n is less than 75 degree. Then 
Equation (1) can be simply represented as: 
    #$ − #& < #$ Δ"/cos75∘�  (2) 
When two points satisfy this condition, they are 
regarded as point on the same surface.  

3.3. Visible points from the moving eye 
In Figure 10, continuous surfaces are shown in 

gray, and boundary points of surfaces are shown in 

blue. As shown in this figure, depth values largely 
vary at the boundaries of continuous surfaces. When 
visible points from the fixed eye are given, 
additional visible points from the other eye can be 
observed between boundary points of two 
continuous points, as shown in Figure 10.  

To detect points that are visible only from the 
moving eye, we estimate the range of additional 
points using two boundary points. We denote the 
range of additional points as L, and the distance 
between two eyes as d, as shown in Figure 11. The 
origin is the fixed eye. Then L can be represented as:  

     
(3) 

We project points on the panoramic image again, 
and select occluded points when the distance from 
boundary points is less than L. 

Figure. 12 shows visible points from two eyes. 
The left figures show visible points from the fixed 
eye. When these points are viewed from the moving 
eye, gaps, which are shown in white, can be 
observed near boundary points. The middle figures 

L = d |P1 |
|P2 |
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Figure 12. Visible points from two eyes 

 
Figure 10. Points on continuous surfaces 

 

  
Figure 11. Additional visible points for moving eye 
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show additional points that are visible only from the 
moving eye. The right figures merged points, which 
are sufficient to generate parallax views for both 
eyes. 

3.4. View frustum culling on panoramic 
image 

When points are out of the view frustum, they do 
not have to be rendered. However, it is time-
consuming to apply view frustum culling to a huge 
number of points. To efficiently culling points, we 
subdivide panoramic images into strips, as shown in 
Figure 13.  

Since strip regions are defined in angle space, 
visibility of each strip can be quickly evaluated using 
head directions and viewing angles. We denote the 
head direction as (", 1), and the viewing angles as 
w and h. Then points in each strip are rendered only 
when the strip region overlaps with the region 
defined by " ± (4/2 + 7)  and 	1 ± (ℎ/2 + 7) , 
where 7 is a constant value for parallactic angles. 

4.  EXPERIMENTS 

4.1. Performance evaluation 
We evaluated the performance of our method 

using point-clouds of a factory in our university. An 
example of a point-cloud is shown in Figure 14. This 
point-cloud consists of about 40 million points. We 
captured point-clouds at several positions using the 
laser scanner HDS7000, which were developed by 
Leica geosystems. The measurement time is about 5 
minutes for setting up a laser scanner, and about 1 
minute to measure a point-cloud.  

Computation was performed on a PC with 16GB 
RAM and an Intel Core i5-4440 3.10GHz CPU. 
When we measured rendering performance, we 
calculated the average of 1000 trials. Point-clouds 
were rendered using OpenGL with NVIDIA 
GeForce GT 640. We used an Oculus Rift DK2 as an 
immersive head mounted display. Parallax images 
are generated using the Oculus SDK.  

First we evaluated how many points could be 
rendered in high frame rates without using our 
method. We evaluated frame rates while changing 
the number of points. Figure 15 shows the results. In 

this evaluation, only one million points could be 
rendered in 75 fps.  

Then we uniformly reduced the number of points 
to one million. Figure 16 shows the rendering result. 
This result shows that the rendering quality of 
reduced points is significantly degraded. 

Then we evaluated frame rates using our 
proposed method. In our method, points are 
selectively reduced on image space by eliminating 
invisible points and redundant points. The number of 
rendered points is determined according to the 
resolution of stereoscopic devices. When the higher 
resolution is specified, the larger number of points 
are selected. We rendered points while changing the 
resolution of rendered images.  

The results are shown in Figure 17.  In this 
experiment, the frame rate exceeded 75 fps when the 
resolution was 1944 x 972 pixels. We note that there 
are about 1.9 million points on an image of 1944 x 
972 pixels, but rendered points are reduced to less 
than one million using strip-based view frustum 
culling. 

Even when the number of rendered points was 
limited to less than one million, our method could 

 

 
Figure 13. Subdivision for view frustum culling 

 

 
Figure 14. Point-cloud of our university factory 
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generate much more clear images, as shown in 
Figure 18. This is because our method selected a 
small number of rendered points according to the 
visibility of points and the resolution of the device.  

In addition, our method requires only small sizes 
of memory, because the system maintains only 
points on a panoramic image. When the resolution of 
the devise is 1944 x 972 pixels, the data size is about 
28 MB. 
   We also evaluated timing for generating 
panoramic images while changing the sizes of point-
clouds. Since all points are projected onto a 

 
Figure 15. Relationship between frame rates  

and the number of points. 
 

 
Figure 16. Points rendered in 75 fps  

without using our method 
 

 
Figure 17. Frame rates of our method 

 

 
Figure 18. Points rendered in 75 fps  

using our method 
 

 
Figure 19. Pre-processing time for selecting points 
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panoramic image, computation time becomes longer 
when the number of points is larger. Figure 19 shows 
processing time to generate panoramic images. The 
frame rates were linearly decreased according to the 
number of points.  
   In this experiment, approximately 20 million 
points could be processed in a second. Therefore the 
user has to wait updating rendered points in a several 
second when the user moves to a new position. Once 
points are updated, points can be rendered in a 
stereoscopic way in 75 fps. 

5. CONCLUSION 
In this paper, we proposed a fast stereoscopic 

rendering method for large-scale points captured 
using terrestrial laser scanners. In our method, 
visible points are extracted on panoramic images 
based on the visibility of points and the resolution of 
the device. In our experiments, we showed that our 
method could render stereoscopic images of large-
scale point-clouds in 75 fps.  

In future work, we would like to consider 
methods that can generate higher resolutions of 
images in 75 fps. In our current implementation, the 
user has to wait several seconds when the user 
changes head positions. We would like to reduce 
waiting time in preprocessing. We would also like to 
develop method to flexibly interact with stereoscopic 
views using emerging devices for user interaction. 
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