
Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 1

A POINT-BASED VIRTUAL REALITY SYSTEM FOR SUPPORTING
PRODUCT DEVELOPMENT

Hiroki Okamoto
The University of Elector-Communications

Chofu, Tokyo, Japan

Hiroshi Masuda
The University of Elector-Communications

Chofu, Tokyo, Japan

ABSTRACT
 In this paper, we discuss methods to efficiently
render stereoscopic scenes of large-scale point-
clouds on inexpensive VR systems. Recently,
terrestrial laser scanners are significantly improved,
and they can easily capture tens of millions points in
a short time from large fields, such as engineering
plants. If 3D stereoscopic scenes of large-scale
point-clouds could be easily rendered using
inexpensive devices, they might be involved in
casual product development phases. However, it is
difficult to render a huge number of points using
common PCs, because VR systems require high
frame rates to avoid VR sickness. To solve this
problem, we introduce an efficient culling method
for large-scale point-clouds. In our method, we
project all points onto angle-space panoramic images,
whose axes are the azimuth and elevation angles of
head directions. Then we eliminate occluded and
redundant points according to the resolutions of
devices. Once visible points are selected, they can be
rendered in high frame rates. Visible points are
updated when the user stays at a certain position to
observe target objects. Since points are processed on
image space in our method, preprocessing is very
fast. In our experiments, our method could render
stereoscopic views of large-scale point-clouds in
high frame rates.

1. INTRODUCTION
 Virtual reality (VR) is useful in a variety of
phases in product development. VR is a technique to
create an immersive virtual environment as if the
user were in the scene. In design phases, VR can be
used to confirm styling by placing products in
realistic usage scenes. Simulation results can also be
evaluated three-dimensionally in analysis phases.
VR is also effective in process planning phases to
instruct operations or to confirm manufacturability in
virtual production lines.
 Recently inexpensive stereoscopic devices were
developed for computer games. These devices can be
potentially used in a variety of product development
phases [1]. However, it is time-consuming to create
3D virtual scenes if the user has to create many 3D
models. This problem prevents us to utilize virtual
environment in casual tasks.

Point-based models are useful to easily and
rapidly create virtual environment. Recently,
terrestrial laser scanners (TLS) are significantly
improved, and they can easily capture a huge number
of points in a short time from large fields, such as
engineering plants. The state-of-the-art laser
scanners can capture one million points in a second
within one hundred meters.

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 2

 When point-clouds are densely captured, they
can be used to render realistic as-is scenes. If 3D
stereoscopic scenes of a huge number of points could
be easily rendered on inexpensive devices, they
might be involved in casual product development
phases.
 However, VR systems require high frame rates for
rendering scenes to avoid VR sickness. It is often
pointed out that frame rates for VR should be more
than 75 fps. In existing methods, it is not easy to
render tens or hundreds millions points captured by
TLSs in high frame rates on common PCs. An easy
way to render a huge number of points is to reduce
the number of rendered points, but this approach
pays the penalty of missing details.
 So far, point-based rendering has been
intensively studied in the field of computer graphics
[2-4]. In typical methods, 3D space is subdivided
into hierarchical sub-spaces to efficiently render
point-clouds in a multiresolution manner [5-15].
Rusinkiewicz et al. [10] proposed a fast rendering
method for point-clouds based on level-of-details
and quantization of coordinates. Dachsacher et al.
[11] extended this method using the sequential point
trees (SPT). Okamoto et al. [12] clustered points
using the view frustum and depth determination.
Pajarola, et al. [13] proposed out-of-core multi-
resolution rendering for point-clouds. Wimmer et al.
[14] developed Instant Points to reduce preprocess-
ing time.
 However, the frame rates of these methods are
not very high. In most cases, they compromise the
quality of rendering while objects are moving, and
then they refine details when objects stop moving.
Unfortunately, this approach is not suitable for
stereoscopic devices, because head directions are
always changing in VR environment. Kreylos, et al.
[15] realized real-time rendering of large-scale point-
clouds using an out-of-core view-dependent
multiresolution rendering scheme. However, their
method was developed on expensive high-end VR
systems.
 In this paper, we propose a method for rendering
a huge number of points on common PCs. Since our
method does not construct hierarchical structure of
points, preprocessing is very fast. We realize high

Figure 1. Head mounted display

(Oculus Rift DK2)

Figure 2. Distorted parallax images on HMD

Figure 3. Process of our method

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 3

frame rates for rendering by eliminating invisible
points and adjusting the resolution of points to the
resolution of devices. We show that invisible points
and redundant points can be easily and quickly
eliminated on angle-space panoramic depth images,
whose axes are the azimuth and elevation angles of
head directions.

As an inexpensive device, we use the Oculus Rift
DK2 (Figure. 1), which was developed by Oculus
VR Inc. [16]. The resolution of this device is 1920 x
1080. The head tracking system traces head
directions using a gyroscope, and the position
tracking system traces the head position using an
infrared camera. The device realizes a wide viewing
angle by distorting parallax images using two fish-
eye lenses. Figure 2 shows parallax images displayed
on the screen of an Oculus HMD.

Figure 3 shows a process of our method. First
visible points are selected from point-clouds. Then
selected points are transferred to a stereoscopic
device, and they are rendered according to head
directions in real-time. In this paper, we define frame
rates that are equal or higher than 75 fps as “real-
time” rendering.

When the user moves forward or backward and
changes the head position, visible points are
recalculated and updated. This process is done in
background processes while points are rendered. In
the phase for selecting visible points, we transform
coordinates of point-clouds to the spherical
coordinate system, whose origin is the head position.
Then, we create a panoramic image in angle space,
as shown in Figure 4. The resolution of panoramic
images is determined so that the resolution is equal
or higher than the one of the stereoscopic device.
When multiple points are projected on the same
pixel, redundant points are eliminated. When the
density of points is smaller than the resolution of the
panoramic image, unfilled regions may be generated
on rendered images. Then we estimate surfaces and
resample points in unfilled regions.

2. GENERATION OF PANORAMIC IMAGE

2.1. Panoramic image
In our method, point-clouds are converted to a

panoramic image in angle space. We define a local

spherical coordinate system, in which the origin is
the head position. Then each coordinate (x, y, z) in
point-clouds is converted into a spherical coordinate
(θ, φ, r), where θ is the elevation angle, φ is the
azimuth angel, and r is the distance from the origin.
A panoramic image (Figure 4) is generated by
quantizing (θ, φ) and describing RGB colors of
points at each pixel. In this paper, we generate
panoramic images so that the resolution is equal or
higher than the one of the stereoscopic device.

When the density of points is higher than the
resolution of the panoramic image, multiple points
are projected on the same pixel. Then the point with
the smallest depth is maintained at the pixel.

Figure 4. Panoramic image generated by points

2.2. Resample points in unfilled regions
When the resolution of points is less than the one

of panoramic images, unfilled regions may be
generated on panoramic images, as shown in Figure
5. In this figure, any points are not projected in white
regions. Unfilled regions are often generated on
distant objects or inclined surfaces, on which point
density becomes sparse.

Unfilled regions are also generated when laser
beams are occluded by other objects. However, it is
difficult to estimate arbitrary occluded surfaces. In
this paper, we fill only planar regions by resampling
points on planes.

We first fill salt-and-pepper gaps simply by
interpolating the depths as the average of 3x3
neighbor points on the panoramic image. In the next
step, we detect unfilled regions and select their
boundary points. When the boundary points fit a
plane approximately, the unfilled region is regarded
as a continuous plane. Then we resample points in
each unfilled region by calculating coordinates on
the plane. In addition, colors in the unfilled region

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 4

are calculated as the average of two color values,
which are interpolated linearly in each of the two

directions, lateral and longitudinal on the panoramic
image, as shown in Figure 6.

Figure 7 shows an interpolated result, in which
resampled points fill planar unfilled regions.

3. EXTRACTING VISIBLE POINTS

3.1. Visible points from the fixed eye
To render stereoscopic views on a HMD, two

parallax images have to be generated. Since it is
time-consuming to separately calculate visible points

from two eyes, we select visible points only from

one eye, and then select additional points that are
visible from the other eye.

To reduce computation time, we suppose that
one eye is fixed, and the other eye moves around. In
Figure 8(a), the head direction of the user faces
forward, and in Figure 8(b), the head direction is
turned to the right. In this paper, we suppose that the
position of the moving eye moves horizontally. Then,
visible points from the fixed eye can be simply
obtained as a panoramic image, because the fixed
eye is defined as the origin of the spherical
coordinate system.

3.2. Detection of boundary points
When visible points from the fixed eye are

obtained as a panoramic image, continuous regions
can be detected from the panoramic image. Figure 9
shows two adjacent points on a panoramic image.
When two points P1 and P2 are on the same surface,
they approximately satisfies:

 ,
(1)

(a) Looking forward (b) Looking right direction
Figure 8. Fixed eye and moving eye

Figure 9. Two adjacent points on a surface

Figure 5. Unfilled regions on panoramic image

Figure 6. Linear interpolation in two directions on

the panoramic image.

Figure 7. Panoramic image filled by additional points

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 5

where Δ" is the angular resolution of points, and n
is the normal vector of a surface.
 Since it is time-consuming to estimate normal
vectors at all points, we suppose that the angle
between OP1 and n is less than 75 degree. Then
Equation (1) can be simply represented as:
 #$ − #& < #$ Δ"/cos75∘� (2)
When two points satisfy this condition, they are
regarded as point on the same surface.

3.3. Visible points from the moving eye
In Figure 10, continuous surfaces are shown in

gray, and boundary points of surfaces are shown in

blue. As shown in this figure, depth values largely
vary at the boundaries of continuous surfaces. When
visible points from the fixed eye are given,
additional visible points from the other eye can be
observed between boundary points of two
continuous points, as shown in Figure 10.

To detect points that are visible only from the
moving eye, we estimate the range of additional
points using two boundary points. We denote the
range of additional points as L, and the distance
between two eyes as d, as shown in Figure 11. The
origin is the fixed eye. Then L can be represented as:

(3)

We project points on the panoramic image again,
and select occluded points when the distance from
boundary points is less than L.

Figure. 12 shows visible points from two eyes.
The left figures show visible points from the fixed
eye. When these points are viewed from the moving
eye, gaps, which are shown in white, can be
observed near boundary points. The middle figures

L = d |P1 |
|P2 |

−1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Figure 12. Visible points from two eyes

Figure 10. Points on continuous surfaces

Figure 11. Additional visible points for moving eye

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 6

show additional points that are visible only from the
moving eye. The right figures merged points, which
are sufficient to generate parallax views for both
eyes.

3.4. View frustum culling on panoramic
image

When points are out of the view frustum, they do
not have to be rendered. However, it is time-
consuming to apply view frustum culling to a huge
number of points. To efficiently culling points, we
subdivide panoramic images into strips, as shown in
Figure 13.

Since strip regions are defined in angle space,
visibility of each strip can be quickly evaluated using
head directions and viewing angles. We denote the
head direction as (", 1), and the viewing angles as
w and h. Then points in each strip are rendered only
when the strip region overlaps with the region
defined by " ± (4/2 + 7) and 	1 ± (ℎ/2 + 7) ,
where 7 is a constant value for parallactic angles.

4. EXPERIMENTS

4.1. Performance evaluation
We evaluated the performance of our method

using point-clouds of a factory in our university. An
example of a point-cloud is shown in Figure 14. This
point-cloud consists of about 40 million points. We
captured point-clouds at several positions using the
laser scanner HDS7000, which were developed by
Leica geosystems. The measurement time is about 5
minutes for setting up a laser scanner, and about 1
minute to measure a point-cloud.

Computation was performed on a PC with 16GB
RAM and an Intel Core i5-4440 3.10GHz CPU.
When we measured rendering performance, we
calculated the average of 1000 trials. Point-clouds
were rendered using OpenGL with NVIDIA
GeForce GT 640. We used an Oculus Rift DK2 as an
immersive head mounted display. Parallax images
are generated using the Oculus SDK.

First we evaluated how many points could be
rendered in high frame rates without using our
method. We evaluated frame rates while changing
the number of points. Figure 15 shows the results. In

this evaluation, only one million points could be
rendered in 75 fps.

Then we uniformly reduced the number of points
to one million. Figure 16 shows the rendering result.
This result shows that the rendering quality of
reduced points is significantly degraded.

Then we evaluated frame rates using our
proposed method. In our method, points are
selectively reduced on image space by eliminating
invisible points and redundant points. The number of
rendered points is determined according to the
resolution of stereoscopic devices. When the higher
resolution is specified, the larger number of points
are selected. We rendered points while changing the
resolution of rendered images.

The results are shown in Figure 17. In this
experiment, the frame rate exceeded 75 fps when the
resolution was 1944 x 972 pixels. We note that there
are about 1.9 million points on an image of 1944 x
972 pixels, but rendered points are reduced to less
than one million using strip-based view frustum
culling.

Even when the number of rendered points was
limited to less than one million, our method could

Figure 13. Subdivision for view frustum culling

Figure 14. Point-cloud of our university factory

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 7

generate much more clear images, as shown in
Figure 18. This is because our method selected a
small number of rendered points according to the
visibility of points and the resolution of the device.

In addition, our method requires only small sizes
of memory, because the system maintains only
points on a panoramic image. When the resolution of
the devise is 1944 x 972 pixels, the data size is about
28 MB.
 We also evaluated timing for generating
panoramic images while changing the sizes of point-
clouds. Since all points are projected onto a

Figure 15. Relationship between frame rates

and the number of points.

Figure 16. Points rendered in 75 fps

without using our method

Figure 17. Frame rates of our method

Figure 18. Points rendered in 75 fps

using our method

Figure 19. Pre-processing time for selecting points

Proceedings of the ASME IDETC/CIE 2016,�August 21-24, 2016, Charlotte, North Carolina
IDETC2016-59756: 8

panoramic image, computation time becomes longer
when the number of points is larger. Figure 19 shows
processing time to generate panoramic images. The
frame rates were linearly decreased according to the
number of points.
 In this experiment, approximately 20 million
points could be processed in a second. Therefore the
user has to wait updating rendered points in a several
second when the user moves to a new position. Once
points are updated, points can be rendered in a
stereoscopic way in 75 fps.

5. CONCLUSION
In this paper, we proposed a fast stereoscopic

rendering method for large-scale points captured
using terrestrial laser scanners. In our method,
visible points are extracted on panoramic images
based on the visibility of points and the resolution of
the device. In our experiments, we showed that our
method could render stereoscopic images of large-
scale point-clouds in 75 fps.

In future work, we would like to consider
methods that can generate higher resolutions of
images in 75 fps. In our current implementation, the
user has to wait several seconds when the user
changes head positions. We would like to reduce
waiting time in preprocessing. We would also like to
develop method to flexibly interact with stereoscopic
views using emerging devices for user interaction.

REFERENCES
1. Bharathi, A. K. B. G. and Conrad, S. T.:

Investigating the Impact of Interactive
Immersive Virtual Reality Environments in
Enhancing Task Performance in Online
Engineering Design Activities. ASME 2015
IDETC (2015)

2. Kobbelt, L., Botsch, M.: A survey of point-
based techniques in computer graphics. Comput.
Graph. 28(6), 801–814 (2004)

3. Sainz, M., Pajarola, R.: Point-based rendering
techniques. Com- put. Graph. 28(6), 869–879
(2004)

4. Gross, M.H., Pfister, H.: Point-Based Graphics.
Morgan Kauf- mann, San Mateo (2007)

5. Mario, B., Wiratanaya, A. and Kobbelt, L.:
Efficient high quality rendering of point

sampled geometry. Proceedings of the 13th
Eurographics Workshop on Rendering (2002)

6. Mario, B. and Kobbelt, L.: High-quality point-
based rendering on modern GPUs. Computer
Graphics and Applications, 2003. Proceedings.
11th Pacific Conference on. IEEE (2003)

7. Gobbetti, E., Marton, F.: Layered point clouds.
In: Proceedings Eurographics/IEEE VGTC
Symposium on Point-Based Graphics, pp. 113–
120 (2004)

8. Michael, W. et al.: Interactive Editing of Large
Point Clouds. SPBG (2007)

9. Ruwen, S., Möser, S. and Klein, R.: A
Parallelly Decodeable Compression Scheme for
Efficient Point-Cloud Rendering. SPBG (2007)

10. Rusinkiewicz, S., Levoy, M.: QSplat: A
multiresolution point rendering system for large
meshes. In: Proceedings ACM SIG- GRAPH,
pp. 343–352 (2000)

11. Dachsbacher, C., Vogelgsang, C., Stamminger,
M.: Sequential point trees. ACM Trans. Graph.
22(3) (2003). Proceedings ACM SIGGRAPH

12. Okamoto, Y.: Sequential Point Clusters:
Efficient Point-based Rendering Method for
Huge 3D Models. IPSJ Journal, 46(1), pp.
1234-1237 (2005)

13. Pajarola, R., Sainz, M., Lario, R.: XSplat:
External memory multiresolution point
visualization. In: Proceedings IASTED
International Conference on Visualization,
Imaging and Image Processing, pp. 628–633
(2005)

14. Wimmer, M., Scheiblauer, C.: Instant points:
Fast rendering of unprocessed point clouds. In:
Proceedings Eurographics/IEEE VGTC
Symposium on Point-Based Graphics, pp. 129–
136 (2006)

15. Kreylos, O., Gerald W. B. and Louise H.:
Immersive visualization and analysis of LiDAR
data. Advances in visual computing. Springer
Berlin Heidelberg, pp. 846-855 (2008)
16. https://developer.oculus.com

