Coding Topological Structure of 3D CAD Models

Hiroshi Masuda
Department of Environmental and Ocean Engineering,
The University of Tokyo,
Bunkyo-ku, Tokyo 113 Japan,

Ryutarou Ohbuchi and Masaki Aono
IBM Research, Tokyo Research Laboratory
1623-19, Shimo-tsuruma, Yamato-shi, Kanagawa 242 Japan

Abstract

This paper proposes a loss-less method to encode and
compress three-dimensional (3D) geometric models which
may contain non-simple topological structures. Any com-
bination of wireframe, surface, and solid components can be
encoded and compressed by the method. Furthermore, our
method is able to handle models that contain various non-
simple topological structures that are likely to exist models
generated by using 3D Computer Aided Design (CAD) sys-
tems. Previous methods were only able to handle limited
classes of relatively simple topological types and thus were
not able to handle most 3D CAD models.

Given a model that may include a wide range of non-
simple topological types, our method transforms it to a “re-
duced” model that only contains simple topological types.
This topological transformation is performed by applying
a sequence of Euler operators to the given model. Both
the transformation operation and the reduced model are
encoded and compresed to produce compressed data. We
adopted a powerful existing method by Taubin et al to en-
code triangular mesh, the result of reductioin.

We implemented and evaluated our compression algo-
rithm. Experiments with 3D models of mechanical parts
showed that, in addition to being able to handle a diverse
and complex topological types, our method achieves excel-
lent compression ratios.

Keywords: Data compression, three-dimensional geomet-
ric modeling, solid model, computer aided design (CAD).

1 INTRODUCTION

Increasing number of mechanical products are developed and
manufactured as collaborative endeavors of multiple entities,
for example, among multiple companies or multiple divisions
within a company. Consequently, sharing of design and man-
ufacturing data among these entities by using the Internet
and other medium have become quite important. Activities
to ensure exchangeability of design data, for example the
ISO 10303 [16], informally known as STEP, are intended to
facilitate such data sharing.

Exchangeability of design data alone, however, is not
sufficient to promote sharing. Recent advent of three-
dimensional (3D) Computer Aided Design (CAD) systems
allowed us, for example, to create a design consisting of a
large number of complex solid models. This trend resulted
in explosions in data sizes of such 3D models. The explosion
in data size significantly increased demand for communica-
tion bandwidth and storage space.

Bandwidths of commnication media for data exchange,
such as the Internet, have not kept pace with the increase in
model data size, however. Consequently, exchanging design
data of size tens to hundreds of megabytes over a network
takes significant amount of time. The shortage of commu-
nication bandwidth has become a major impediment to the
widespread use of collaborative design.

An obvious approach in alleviating network bandwidth
shortage is to compress data to be transferred, which is, in
our case, 3D CAD models.

Numerous compression methods for such data objects as
text, sound, image, and movie have been studied extensively
for years. It is only recently that several compression meth-
ods for 3D models have been proposed [8, 6, 12, 9]. Triangle
strip and Triangle fans, included in IRIS GL and OpenGL
can also be viewed as methods to compactly encode trian-
gular meshs. While these algorithms achieved siginificant
compression, they alrogithms are not very effective in com-
pressing 3D geometric models created by CAD systems. The
major impediment here is the lack of supports in these com-
pression methods for diverse and complex topological types
that may be included in 3D CAD models.

For example, Deering[8], Hoppe[6] and Li[12] support only
triangular meshes. Taubin and Rossignac extended the do-
main to polygonal models with non-manifold and with non-
orientable conditions [9]. However, Taubin’s method still has
not been able to handle such non-simple topological struc-
tures as holes in faces, cavities in solids, strut edges, and
self loops. (These topological constructs are illustrated in
Figurel.)

To accept models produced by contemporary 3D geomet-
ric CAD systems, a compression method must extend its
domain so that diverse range of topological types including
those illustrated in Figure 1 are included.

It has been known that an arbitrary topological mod-
ification can be realized by applying a sequence of Euler
oprators to a model. Furthermore, original topology of the
model can be recovered by applying reverse Euler operators
in an inverted sequence [1]. Our new compression method
for 3D models with arbitrary topological strucutre utilizes
this property.

Our compression method first transform an original 3D
model by using a sequence of Euler operators so that the
result of the transformation contains only simple topological
types. Both the recorded sequence of Euler operators used
for the transformation and the transformed model, which
is a triangular mesh, are encoded, compressed and stored
and/or transmitted.

In order to efficiently encode topology of the reduced

model, we employed a polygonal meshe encoding method
developed by Taubin and Rossignac [9]. Encoded topology
of the transformed mesh and the Euler operator sequence
used for the transformation are then processed by using en-
tropy coders appropiate to respective data types. Similary,
attributes, which may include color and geometry (e.g., co-
ordinates of vertices) of the model are also processed by
using appropriate entropy coders. Throghout the process,
correspondence of topological entities and their attributes
are maintained by using adjacency of the topological com-
ponents.

Decoder of the compressed model data employs a pro-
cess which is essentially an inverse of what is used for en-
coding. Entropy decoders are followed by reconstruction of
original topology by using an inverted sequence of reverse
Euler operators. Attributes (including geometry) and their
relactions to topological components are maintained and re-
covered. Attributes themselves are also decompressed and
added to the recovered topology.

The rest of this paper is structured as follows. In Section
2, we present an overview of our compression method, fol-
lowed in Section 3 by an description of Euler operators we
employed. We will present, in Section 4, a method to main-
tain correspondence between topological entity and geome-
try and/or attributes. Next, we will describe coding method
for the reduced topology in Section 5, and coding method for
geometry in Section 6. In Section 7, we will present results
of experiments that applied our coding method to several
3D CAD models. We conclude in Section 8 with summary
and remarks on future work.

000
o

Figure 1: Examples of non-simple topological structures
used by 3D CAD models; degenerate polygons (a, b, and

c), an isolated vertex, a strut edge, an isolated edge, and a
self loop on a surface (d), and a cavity in a solid (e).

(€)

2 OVERVIEW OF ENCODING AND DE-
CODING PROCESS

This section presents an overview of the encoding and de-
coding steps of the 3D model compression method. Details
of each step will be explained in the following sections.

The diagram in Figure 2 illustrates the encoding and de-
coding process. Decoding of compressed data is essentially
and inverse of encoding so that this section only describes
the encoding process. In this figure, the downward flow of
data is for encoding and the upward flow of data is for de-
coding. We assume that the encoder accepts as its input 3D
models that may include solid, surfaces, and/or wireframe
models.

Processing required for encoding can be summarized as
follows;

o Simplifying topological structures: Simplify topology
of the input model down to triangular meshes while
recording the sequence of Eular operators used for the
simplification.

e FEncode reduced topological entities: Encode and com-
press the sequence of Eular operators used for the sim-
plification.

e FEncode reduced triangular mesh: Encode and compress
topology of the triangular meshes, which are the results
of the simplification.

e FEncode geometry and attributes: Encode and compress
the attributes and geometry of the simplified triangular
meshes.

In addition, steps above requires several bookkeeping op-
erations.

e A unique identifier need to be assigned to each topolo-
gycal entity of the triangular meshes, the result of sim-
plificatoin, so that the entities can be correctly associ-
ated with their geometry and attributes.

The remaining of this section briefly describes each of the
steps and bookkeeping operations.

2.1 Simplifying Topological Structures

In order to encode a 3D CAD model, solid and surface mod-
els components of the orignal model are topologically trans-
formed so that they become simple polyognal models. At
the same time, cavities in solids, holes in faces, strut edges,
self-loops, and other non-simple topological structures in the
original model are removed. Both of these transformations
are performed by using a sequence of Euler operators. Be it
solid, surface, or wireframe, the end product of this trans-
formation step is one or more triangular meshes. The kinds,
operands, and application seqence of Euler operators used
for the transformation are recorded, encoded, compressed,
and packed with the reduced simple polygonal mesh model
to produce a compressed model.

2.2 Ordering and Numbering Topological Entities

A unique sequential number is attached to each topological
entity of the triangular meshes and/or wireframe models. By
also ordering geometry and attribute components, the num-
bering is used to maintain correspondence between topology
and its geometry and/or attribute components. Here, ge-
ometries could be vertex coordinates of polygonal meshes
or coordinates of control points parametric surfaces, and at-
tributes could be stiffness and masses of solids.

At the same time, geometry (e.g., vertex coordinates of
triangular meshes or control point coordinates of parametric

surfaces) and attiributes (e.g., stiffnesses and masses of solid
objects) that are associated with the topological entities are
also numbered. These numbering are necessary to maintain
association of topological entities with their corresponding
geometry and attiributes.

If vertices are uniquely and sequentially numbered, they
can be associated with their coordinates by simply storing
both in the same order. Our algorithm, however, encode
topology differently from geometry and/or attributes since
these two groups have quite different characteristics and thus
require different coding approaches. Numbers attached to
both topological entity and their geometry and/or attributes
are used to later recover their correspondences upon decom-
pression.

2.3 Encoding Reduced Topological Entities

At this stage, topology data contains both triangular meshes
and wireframe models. Due to their different topological
properties, the two are encoded by using different meth-
ods. Topology of triangular meshes are encoded by using
the method developed by Taubin and Rossignac [9], which
is probably the most efficient method developed so far.

To encode wire frame models, spanning trees of their ver-
tices are computed first. A spanning tree here is defined as
a tree that covers every vertices on the wire frame. Then,
edges that are on the spanning tree are encoded separately
from edges that are not included in the spanning tree. This
increases coding efficiency.

2.4 Encoding Geometry and Attribute

Non-topological entities such as geometry and attribute that
are associated with a topological entity are encoded by using
methods appropriate for each one of them. In this paper, we
assume geometry as the representative of the non-topological
entity for explanation.

To encode geometry, we employ a loss-less compression
technique. While lossy compression is known to yield a
large compression ratio, lossy compression is not torelated
for CAD applications. For example, a boolean operation
(e.g., difference) of a computational solid geometry modeler
will fail if geometries of the models to be operated have er-
rors.

2.5 Entropy Coding

Finally, all encoded data are compressed by using an entropy
coding method. For the experiment reported in this paper,
we employed a general-purpose entropy coding tool based on
a dictionaly based compression algorithm. Further increase
in compression efficiency is expected if we were to fine tune
this entropy coding stage.

3 TOPOLOGICAL MODIFICATION

3.1 Euler operators

As outlined before, our method first reduces solid and sur-
face models down to a set of triangular meshes by applying
a sequence of Euler operators. The reduction process is il-
lustrated in Figure 3. Names of Euler operators employed
in this figure are defined in Table 3.1, in which (a) lists a
set of Euler operators for encoding, and (b) lists a set of
Euler operators for decoding, each of which are inverse their
counterpart in (a).

E E= =

| Topological Operations

P

Numbering Topological Entities

=

Coding
Decoding

| Encoding | | Encodlng Encodlng i Encodlng |

| Entropy Codlng |

—_—_———— e e e e e e e e e — — ——

Figure 2: 3D geometric model encoding process.

This reduction process is reviersible so that if inverse of
each operator is applied in an inverted sequence, reduced
model can be transformed back to the original. This reduc-
tion enables us to apply efficient coding methods developed
for triangular meshes.

1. Separation of shells: Solids with cavities are separated
into multiple shells so that cavities are eliminated, by
using the Kill Cavity and Make Model (KCMM) op-
erator. Figure 3.1 (a) illustrates this transformations.
After this transformation, solids can be treated as sets
of orientable connected faces (that are, shells).

2. Subdivision of Surface Edges: In order to remove de-
generate topological entities, by using Split Edges (SE)
operator, edges in loops are segmented by inserting ver-
tices so that every loop has more than three vertices.
In Figure 3 (2), segmentation of a circle by adding two
vertices illustrates an example of this transformation.
This transformation is necessary since CAD systems
routinly generates such degenerate topological entities,
which can not be encoded by simply applying existing
coding methods, such as Taubin’s. In addition, if two
edges share two vertices and thus can not be distin-
guished from each other, one of the edges is segmented
by inserting a vertex so that the two can be distin-
guished uiniquely by their starting and ending vertices.
In Figure 3 (2), insertion of a vertex into an oval with
two vertices illustrates an example of this transforma-
tion.

3. Removwal of Holes and Strut Edges: A surface with holes
consists of more than one loops. Similarly, a surface
with strut edges consists of more than one loops. In
these cases, holes and strut edges are removed by ap-
plying Make Edge and Kill Ring (MEKR) operator, as
illustrated in Figure 3 (3). After this transformation,
all the entities are consisted of only one loop.

4. Triangulation: Every face, now consisting of single
loop, is tessellated into triangles, as illustrated in Fig-
ure 3 (4), by using an operator called Make Edge
and Face (MEF). This tessellation can be performed
quickly, since most of it is purely topological and need
not consider geometric factors, such as avoidance of tri-
angles with high aspect ratio.

A care must be take, however, so that less than three
vertices are shared by any pair of triangles. To achieve
this, we employ a constrained Delaunay triangulation.
In the example of Figure 4 (a), two adjacent rectan-
gles (one of them concave) are wrongly tesselated into
four triangles in which two adjacent triangles share all
their vertices. Such triangular mesh can not be handled
properly by the following triangular mesh coding stage.
Our constrained Delaunay triangulation will produce a
tessellation like the one shown in Figure 4 (b).

NNEEEEAN
-

(1) Conversion to solids with no cavities (KCMM)

O 0| — Q0

(2) Subdivision of edges (SE)

\ O

(3) Conversion to faces with no cavities (MEKR)

X

(4) Conversion to triangular polygons (MEF)

Figure 3: Operations for topological transformation.

3.2 Encoding reverse Euler operators

An original model is converted to a reduced model by ap-
plying, at each step, a specific Euler operator to a specific
topological entity. For a bidirectional conversion between
the original model and the reduced model the following must
be recoded;

e The kind of each Euler operator,

e the operand of each Euler operator, i.e., the topological
entity the operator is applied to, and

| Operations | Meaning |

KCMM kill cavity and make model
SE split edge
MEKR make edge and kill ring
MEF make edge and face
(a) Euler Operators for Coding.
| Operation | Meaning |
MCKM make cavity and kill model
ME merge edge
KEMR kill edge and make ring
KEF kill edge and face

(b) Reverse Euler Operators for Decoding.

Table 1: Types of Euler operations.

(@) (b)

Figure 4: (a) Triangles that share all three vertices and (b)
constrained Delaunay triangulation.

e the sequence of { Euler operator, operand} pairs as they
are applied for reduction.

We assume that every topological entity at every step of
conversion is uniquely identified by an identification (ID)
number. This is necessary to uniquely identify the operand
of each Euler operator. The ID numbers are assigned by
using a method that will be described in the next section.

By using a sequence of {Euler operator, operand} pairs
recorded, a reduced topology is reverted back to its original
topology according to the steps below.

1. Inverting Triangulation: Triangulation is inverted, by
deleting edges added upon reduction by using the Kull
Edge and Face (KEF) operator, which is an inverse of
the MEF operator. The operand for the KEF operator
is given as an object ID number.

2. Inverting Remowval of Holes and Strut Edges: A loop
is recovered by deleting an edge that bisected the loop
by using Kill Edge and Make Ring (KEMR) operator
along with its operand, that is, an dge. In addition to
the operation and operand, distinction must be made
if the reconstituted loop is an outer loop or an inner
loop. Outer-loop/inner-loop distinction is made by the
direction of loop traversal, i.e., whether it is traversed
clockwise or counter-clockwise. Thus the loop traversal
direction is encoded as 1 bit flag and stored with each
KEMR operation.

3. Inverting Subdivision of Surface Edges:

As the model was reduced for compression, vertices and
edges were inserted by using SE operator. These ver-
tices and edges are deleted by using a sequence of Merge

Edge (ME) operator. Obviously, the object to be re-
moved must be specified.

4. Inverting Separation of Shells:

As the final step to reconstitute original topology that
include cavities in solids, Make Cavity and Kill Model
(MCKM) operator is used to combine two shells into
a solid with a cavity. Each shell is identified by an ID
number of a vertex included in the shell. Outer shell
and inner shel of the solid with cavity is distinguished
by a one bit flag attached to each shell.

(Comment(Ohbuchill1271998): This item (few para-
graphs around here) must be revised and rewritten.)

In general, at each step, consequence of applying a series of
Euler operators depends on the operator’s application order.
However, in this case, orders of Euler operator applications
may be exchanged at each step, since topological entities
involved in the operation can be uniquely identified as those
that adjoin with each other. (COMMENT: RO So what??)

For example, two faces used by each ME operator can be
identified by using a vertex identifier stored with the ME
operator.

This application order independence at each step of re-
duction leads to very high compression ratio in encoding the
operations and their operands, as explained below.

Since each reduction step automatically identifies the op-
erator of the step, only operands, that are, entity ID num-
bers, need to be encoded at each step. Entity ID numbers
are sorted and their first-order difference are computed. The
first-order difference of the ID numbers consists mostly of
small intergers e.g., 0s, 1s, and 2s. In addition, these num-
bers are repetitious. Consequently, entity ID numbers can
be compressed very efficiently by using an entropy coding
method, such as an arithmatic coding or dictionary based
coding algorithms.

4 MAINTAINING TOPOLOGY-
GEOMETRY CORRESPONDENCE

For proper decoding, correspondence between topological
data and geometric data must be maintained. We attached
to entity identifier to vertices, edges and faces, in order to
specify operand of Euler operators. The identifier is also
used to maintain correspondence of geometry and topolocy.
If a topological entity has an ID number n, its geometry can
be obtained as the n-th geometry data. Attribute data asso-
ciated with the entity can also be found in a similar manner.

One-dimensional ordering of topological entities can be
created by using spanning tree, which is defined as a tree that
covers every nodes in a connected graph. In our algorithm,
entities are ordered, by using spanning trees of vertices as
the starting point.

In general, a model may contain multiple disconnected re-
gions and thus require more than one spanning trees to cover
all the vertices in the model. Figure 5 (a) shows an exam-
ple of a spanning tree that covers a surface model. In the
figure, the black square indicates the starting (root) vertex
and white circles indicates ending vertices (leaves).

A spanning tree is generated given a pair of initial condi-
tion, a starting vertex and a starting edge. In case of surface
and solid models, given a “current” vertex, the edge to be
followed to reach the next vertex is chosen as the first edge,
in clockwise order about the current edge, from the edge that
connected the current and previous vertices. If the chosen

edge made a loop back to the vertices already in the tree,
it is unselected and next edge in clockwise direction is se-
lected. In case of wireframe models, an arbitrary edge that
does not make a loop back to vertices in the existing tree
is selected as the edge that ledges to the next vertex. The
process continues until there is no vertex reacheable from
the current vertex. After a spanning tree is generated, the
tree is traversed, depth first, to produce one-dimensional or-
dering. If a model requires more than one spanning trees
to cover all the vertices, each of tree requires a new pair of
initial conditions.

Figure 5 (b) shows the spanning tree whose vertices are
numbered following a depth-first traversal.

12 3 10

¢ o—9

11 5 6 7

(a) A spanning tree. (b) Ordering.

Figure 5: Ordering vertices using a spanning tree.

Sequential numbers of edges and faces are determined
by using ID numbers of vertices. We identify an edge
[vi,vj](vi < wv;) by vertex IDs at its both ends. We de-
fine an ordering relation among edges as [vi1, vj1] < [viz, vj2]
if ;1 < i or v;1 = vi2. Then, edges can be sorted and their
sequential numbers are obtained. Faces can be sorted in a
similar manner, by identifying a face by using an orderd set
of vertices [vi, vj,...] and defining an ordering relation based
on the ordering of the vertices.

A method to encode a set of spanning trees is necessary to
properly assign sequential ID numbers to toplogical entities.
A method to encode spanning trees is explained in the next
section.

5 COMPRESSING REDUCED MODEL

5.1 Compressing triangular mesh

Once arbitrary topological structures are reduced to triangu-
lar meshes, we can apply existing mesh topology compression
methods such as Taubin’s [9], Deering’s [8] or Hoppe’s [6].
In our implementation, we adopted Taubin’s method due to
its very high compression rate.

Let us explain the Taubin’s triangular mesh topology com-
pression method by using the example of 5.

In order to compress the model shown in Figure 5, the
model is cut through the edges in the spanning tree, as shown
in Figure 6. In other words, edges in the spanning tree is
split into two edges. This cutting produces triangle strips.
In 6, the triangle strips are indicated by the dotted arrows
starting from triangular symbols. Each triangle strip can
be encoded by the start triangle and a sequence of 1 bit
flags that indicate whether the next triangle is adjascent
to either right (R) or left (L) edge of the current triangle.

For example, the longest strip in Figure 6 is encoded as
LLRLLLLLL.

This way, topological structure of triangular meshes can
be stored by encoding spanning trees and triangle strips.
Recovery of the original triangle meshes can be accomplished
by decoding triangle strip from the left/right flag sequence,
and then “stich” the strips together along the edges of the
Spanning tree.

— ===

|
I
[

Figure 6: A method for coding triangular meshes.

5.2 Compressing wireframe

Compression of wireframes is performed in a similar man-
ner. Each edge in a wireframe model is classified into one of
two subtypes, depending on whether the edge is included in
a spanning tree. These two subtypes are compressed sepa-
rately.

Edges on a spanning tree is encoded as follows by using
the vertices IDs at both end. For explanation, we use the
example of 5(a), but assume this time that 5(a) is a wire
frame, not a triangular mesh, and its spanning tree is as
shown in 5(b).

This spanning tree can then be represented as
123(4(5678910)11)12). In this notation, numbers indicate
vertex IDs, the symbol ’(’ indicates that the tree has a non-
traversed branch at the vertex immediately before, and the
symbol ')’ indicates that the ID immediately before the sym-
bol is a leaf. Notice that the IDs are ordered in a strictly
ascending order with an increment of one. Borrowing the
idea of run-length coding, this tree can then be coded as
3(1(6(1)1); each number means length of a “run” of ver-
tex IDs before it is interrupted by either ’(’ or ’)’ symbols.
The run-length-encoded representation of the tree is then
encoded by using an entropy coder.

If an edge is not on the spanning tree, the edge is rep-
resented by a pair of vertices at both ends of the edge that
are sorted in an ascending order, i.e., [sv;, ev;](i = 1,2,..,n).
We then take first order difference of the sorted vertex IDs
[svi — svi—1,ev; — sv;](i = 1,2,..,n.sv0 = 0). The difference
is then encoded by using an entropy coder.

While this compression scheme is straightfoward, it is
quite effective in most of the cases we tried. Chances are
that adjascent vertices have IDs close to each other. If first
order difference is taken, most of the differences are small
numbers, e.g., 0, 1, or 2. Such distribution of numbers can
be encoded quite efficiently by using any entropy coder. Fur-
thermore, topologically similar partial shapes (topologically
repetitive features) can also be captured by using certain

types of entropy coder, for example, a dictionary based en-
tropy coder. Consequently, repetitive features can be com-
pressed very efficiently.

6 COMPRESSING GEOMETRY

Vertices, edges, and faces may have geometric components,
that are, coordinate values, curves, and surfaces, respec-
tively. These geometric components are corrections of float-
ing point numbers, such as coordinates of vertices or control
points of curves and surfaces, combined with a bit of addi-
tional information, such as the degree of a polynmial curve.
In the current implementation, in order to compress geo-
metric components, we simply remove redundancy by using
a loss-less entropy coding method.

Compression methods can be classified into either loss-
less or lossy methods. A loss-less compression maintains
allows exact recovery of values after decompression, but its
compression ratio can not be very high. A lossy compression
grants loss of information in the original data, but significant
data reduction is possible. Choice of compression algorithms
depends on applications of the data to be compressed.

Most CAD applications demands exact reproduction of
original data after decompression. For example, Boolean
operations in a Computational Solid Geometry (CSG) mod-
eler are quite sensitive to geometric errors. Such applications
require loss-less compression methods for geometry. On the
other hand, if the application is to simply view CAD mod-
els, or to perform interference checks, accuracy of double
precision floating point numbers are in general not neces-
sary. A lossy compression method will suffice for this kind
of applications. Examples of lossy compression methods for
geometry can be found in [14, 13].

While both lossy and loss-less compression methods need
be considered depending on applications, we will discuss a
loss-less compression method intended for general CAD ap-
plications.

In this paper, we further restrict the type of geometry
to coordinate values, which are represented by three-tuple
(x,y,z) of double precision floating point numbers. Note that
such coordinate values, used for vertex coordinates and con-
trol points for curves and surfaces, are the dominant com-
ponent in terms of data size among various object types in
geometry.

Coordinate values of vertices are encoded by taking advan-
tage of the one-dimensional ordering of vertices mentioned
before. Each curves and surface may contain either one-
dimensional or two-dimensional list of such coordinate val-
ues. These ordered coordinate values can be treated similary
to the vertex coordinates.

Several methods have been proposed to encode sequences
of coordinate values, for example, linear predictive coding
and predictive residual vector quantization [9, 15]. We ob-
served that these methods are effective if values are normal-
ized and quantized to fixed precision integer values, that is,
when the method is lossy.

THIS PORTION ON FLOATING POINT NUMBER
ENCODING IS A BIT IMPRECISE / WEAK.

Previous algorithms to compress coordinate values rely
on the coherence of the data values, that is, continuous and
smooth changes in coordinate values. They are most effec-
tive when the mesh is dense so that the coordinate values
have high degree of coherence, and when the values can be
normalized to integer values with 16 to 24 bits precision.
Most 3D CAD systems, on the contrary, tend to employ

coarser meshes (each of which is a curved surfaces, for ex-
ample) that has smaller degree of coherence and require that
their coordinate values to be represented in 64 bit floating
point formats with 52 bit or so of mantissa. Consequently,
previous algorithms listed above that are used to compress
coordinate sequences were considered not appropriate for 3D
CAD data. We thus employed a rather simple (near) loss-
less scheme to compress coordiante values.

We employ 1st order difference coding in order to reduce
dynamic range of the coordinate values. To represent ver-
tex coordinate of the vertex n, differences (z,, — & for the
coordinate z, for example) of its coordinate and the coor-
dinates of vertices adjacent to it on the vertex tree is com-
puted. Among the differences, the largest is selected as the
difference. For example, on the tree of Figure 5 (b), the co-
ordinate value of vertex 12 is encoded by using the difference
of coordinate valuese between vertex 12 and 3.

By such normalization, exponent part of the floating point
representation can be eliminated in most of the cases.

An exceptional case occurs if the exponent of that differ-
ence do(n,m) = &, — T, is larger than that of z,; in such a
case, (Tn — Tm) + Tm # T». This exception is flagged by a
using a 1 bit flag, which is stored with the difference value
(Tn — Tm).

The sequence of difference values are then compressed by
using an entropy coding scheme. In our experiment, we used
gzip, a popular dictionary based compression tool, for the
entropy coding. Repeated difference values resulting from
repeated features can be compressed quite efficiently by us-
ing the entropy coder.

7 IMPLEMENTATION AND EXPERI-
MENTAL RESULTS

In order to handle a wide range of 3D model representa-
tions, including wireframe, surface, and solid models, the
algorithm described in this paper was implemented by us-
ing a non-manifold geometric modeler [2] as the kernel. This
modeler employs the radial-edge data structure and provides
a complete set of Euler operations on wireframe, surface, and
solid models.

Our compression/decompression modules are imple-
mented as UNIXT M filters, which converts ASCII files to
compressed binary data and vice versa. Briefly, the ASCII
file that represents the (uncompressed) 3D model has the
following format.

bu

e Vertices are represented by an ordered list of coordi-
nate values. Each coordinate consists of three floating
point numbers. A vertex at mth position in the list is
implicitly given an identifier n.

e An edge is represented by a pair of vertex identifiers.
Each edge in the ordered list of edges is given an iden-
tifier in a similar manner as the vertices.

e A loop is represented by a list of vertex identifiers listed
in counter-clockwise order. Each loop in the ordered list
of loops is given an identifier in a similar manner as the
vertices.

e A face is represented by a set of loops in the face. Each
face in the ordered list of faces is given an identifier in
a similar manner as the vertices.

B
Lih %E‘ :

&Jﬁ“

1 -@\n % 5}3‘}%)@" i

ol
Pig Y

Sty

Figure 7: Examples of 3D Models.

Figure 7 shows examples to which our coding method was
applied. The model A in the figure was created by unifyng
100 identical objects, while the model B in the figure was
created by applying 150 form-features. Both of these models
were polygonal facet models without free-form curves and
surfaces; this is not a loss of generality since our algorithm
compression algorithm focuses on compression of topological
data. Compression methods for surfaces themselves can be
found, for example, in [14] and [13].

Table 2 shows compressed sizes, in kilo byte, and compres-
sion ratios, in percentile, of the two models of the Figure 7.
In applying our compression algorithm, we treated the mod-
els as both wireframe model and solid model. We simply ig-
nored face data in the model for the wireframe models. Com-
pression ratio in the table is defined as (CompressedSize) +
(OriginalSize) x 100. We compared our method and gzip
for the compression ratios.

As see in the table, the algorithm worked well for both
of the models, achieving high compressiong ratios. Redun-
dancy due to the repetitive topological features in both of
the models were quite effectively removed by the algorithm.
As expected, compression ratios for the model A are signifi-
cantly higher than those of model B. This can be explained
by the fact that the model A is much more repetitive in its
topological features than the model B. We believe that the
our compression algorithm could be used as an effective tool
in storing and transferring 3D CAD data.

8 CONCLUSIONS

We have proposed a new loss-less encoding method for 3D
CAD models with arbitrary topological features. The topo-
logical features may include, for example, holes, strut edges,
isolated edges in faces, or cavities. In our approach, a model
with arbitrary topological features is reduced, step by step,
down to a simple triangular mesh model by using a sequence
of Euler operators. Both topology and geometry of the re-
duced triangular mesh is then encoded. In the current im-
plementation, we adopted Taubin’s method[9] in order to
compress topology of the resulted triagular mesh. However,
other techniques can be adopted in place of the Taubin’s
method as other efficient techniques are discovered. Finally,
geometry, essentialy an ordered list of floating point values,
and the encoded topology is compressed by using an entropy
coder. Throughout the process, correspondence of the geom-
etry and topology are maintained. Recovery of the original
model essentially follows the inverse of the encoding steps.
We implemented and evaluated our approach, assuming
that each mesh in the original topology is a polygon. The ex-
periments showed that our method achives an excellent com-
pression ratios. The compression ratios were significantly

Model Original Compressed by Compressed
Size Our Method by gzip
Wireframe | 153.89KB 0.23 KB 54.75KB
(T) (100%) (0.15%) (35.58%)
Wireframe | 403.49KB 3.66KB 87.86KB
(T+G) (100%) (0.91%) (21.78%)
Solid 495.52KB 11.43KB 186.59KB
(T) (100%) (0.31%) (37.66%)
Solid 745.12KB 14.86KB 219.70KB
(T+G) (100%) (2.00%) (29.49%)
(a) Compression of Model A (5520 faces, 15600 edges).
Model Original Compressed by Compressed
Size Our Method by gzip
Wireframe 29.72KB 0.66 KB 12.67KB
(T) (100%) (2.22%) (42.63%)
Wireframe 82.48KB 6.73KB 23.81KB
(T+G) (100%) (8.16%) (28.87%)
Solid 93.35KB 4.21KB 38.80KB
(T) (100%) (4.51%) (41.56%)
Solid 146.11KB 10.28KB 49.94KB
(T+G) (100%) (7.03%) (34.18%)

(b) Compression of Model B (1116 faces, 3304 edges).

Table 2: Compression ratios of two 3D models shown in
Figure 7. In the table, letter T and G denotes topology and
geometry, respectively, and T+G denotes both topoogy and
geometry.

higher than those of a general purpose loss-less compression
tool. It should be mentioned that the steps that compresses
reduced topology and geometry can be improved to further
improve compression ratio.

In the future, we intend to extend our system so that
the system could handle various geometric elements, such
as Coons, Bezier, B-spline, or Non-Uniform B-Spline curves
and surfaces, in the original model While our current imple-
mentation could only handle simple polygons as the geomet-
ric element of the original (uncompressed) model, real-world
CAD models may include various types of curves and sur-
faces such as those listed above.

We also intende study lossy compression algorithms for
CAD models, especially for those models that include cuves
and surfaces. If a model is simply viewed by human beings,
for example to evaluate its shape by using a model broswer,
a lossy compression algorithm with a very high compres-
sion ratio may be what is needed; a lossy compression could
achieve a higher compression ratio than the one achievable
by the loss-less compression.

References

[1] Mantyla, M. and Sulonen, R.: GWB: A Solid Modeler
with the Euler Operators, IEEE Computer Graphics,
Vol.2, No.7, pp.17-31, Sep. (1982).

[2] Masuda, H.: Topological Operators and Boolean Op-
erations for Complex-Based Non-Manifold Geometric
Models, Computer Aided Design, Vol.25, No.2, pp.119-
129, Feb. (1993).

[3] Weiler, K.: Topological Structures for Geometric Mod-
eling, PhD. Thesis, Rensselaer Polytechnic Institute,
Aug. (1986).

[4] Schroeder, W. J., Zarge, J. A., Lorensen W. E.: Dec-
imation of Triangle Meshes, proc. ACM SIGGRAPH
’92, pp.55-64, (1992).

[6] Turk, G.: Re-Tiling Polygonal Surfaces, proc. ACM
SIGGRAPH 92, pp.55-64, (1992).

[6] Hoppe, H.: Progressive Meshes, proc. ACM SIG-
GRAPH 96, pp.99-108 (1996).

[7] Kumar, S., Manocha, D. and Lastra, A. : Interactive
Display of Large NURBS Models, IEEE Transactions
on Visualization and Computer Graphics, Vol.2, No.4,
pp.323-335 (1996).

[8] Deering, M. : Geometry Compression, proc. ACM SIG-
GRAPH 95, pp.13-20 (1995).

[9] Taubin, G. and Rossignac, J.: Geometry Compression
Through Topological Surgery, ACM Transactions on
Graphics, Vol. 17, No 2, pp.84-115 (1998).

[10] Taubin, G., Gueziec, A., Horn, W., and Lazarus.
F.: Progressive Forest Split Compression, ACM SIG-
GRAPH 98, pp.123-132 (1998).

[11] Gumbhold, H. and Strasser, W.: Real Time Compression
of Triangle Mesh Connectivity, ACM SIGGRAPH ’98,
pp.77-77, (1998)

[12] Li, J-K., Li, J., and Jay Kuo, C.-C.: Progressive Com-
pression of 3D Graphic Models, proc. IEEE Interna-
tional Conference on Multimedia Computing and Sys-
tems, pp.?77-77, June (1997).

, R.A., , J. ,B.J.: -

[13] Devore, R.A., Bjorn, J. and Lucier, B.J. : Surface Com
pression, Computer Aided Geometric Design, Vol.9,
pp.219-239 (1992).

[14] Derose, T.,D., Lounsbery, M., and Reissel, L.: Curves
and Surfaces, Wavelets and their Applications in
Computer Graphics, SIGGRAPH '95 Course Notes,
Fournier, A. (ed.), pp.123-154 (1995).

[15] Bossen, F.(ed) : Description of Core Experiments on 3D
Model Coding, Draft on ISO/IEC JTC1/5C29/WG11,
March (1998).

[16] International Organization for Standardization. Indus-
trial Automation Systems and Integration - Product
Data Representation and Ezchange, 1994. (Interna-
tional Standard ISO 10303:1994, informally known as
STEP).

