Topological Operators and Boolean
Operations for Complex-Based

Non-Manifold Geometric Models

Hiroshi Masuda.
IBM Research, Tokyo Research Laboratory

Abstract

Non-manifold geometric modelling is used to represent and manipulate
wireframe, surface, and solid models in a single architecture. It is suit-
able for improving geometric modelling environments for product design. In
this paper, first, some fundamentals of non-manifold geometric modelling
are presented. A mathematical framework is introduced and the topological
structure and basic topological operations are discussed on the basis of the
framework. Next, a new method, which can quickly and arbitrarily reshape
geometric models defined by Boolean operations, is presented. This method
is made possible by the capabilities of non-manifold geometric modelling,
and can be used for design by trial and error and form-feature modelling.

keywords: non-manifold modelling, solid modelling, Euler operations, Boolean
operations, form-feature modelling

Introduction

The concept of early manufacturing involvement is useful for realizing com-
petitive products at low cost. In early manufacturing, it is very important
to integrate design and process planning. By coupling design and process
planning activities tightly, the feedback to the design phase from the process
planning phase can be minimized. This concept is known as simultaneous
engineering, or concurrent design. 3D geometric models, which represent
the geometric shapes of products, play an important role in product design
and manufacturing applications. They are also among the most important
components of simultaneous engineering or concurrent design, because de-
sign activities are ultimately reducible to the geometric shapes of products.
However, it is generally recognized that conventional 3D geometric models
are not sufficient for realizing computerized systems that support complete
design and manufacturing activities. This is mainly because they represent

only the final shapes of products, and systems based on such models do not
hold data on the meanings of the shapes, although this information would
be useful in manufacturing applications. Therefore, when geometric models
are used for various design and manufacturing applications, it is usually nec-
essary to add some information that should have been given to the system
when the model was created. In view of this, capturing and maintaining the
meaning of a shape is very important.

Form-feature modelling [1, 2] is a promising concept for capturing the
meaning of a shape. In this type of modelling, a product is described in
vocabulary that is familiar to designers, and engineering meanings can be
directly manipulated and maintained. In geometric modelling by means of
form-features, the shape of a product is described as a set of subparts each
of which has engineering meanings. Several modelling systems have been
developed on the basis of the idea of the form-features. They have solved
some problems that cannot be dealt with by conventional modelling systems,
but fundamental problems are still left unsolved, because most existing form-
feature modelling systems were developed by means of conventional solid
modelling technologies. The main issues in conventional geometric modelling
can be stated as follows:

e Form-features should be representable in any-dimensional form accord-
ing to applications. In most commercial form-feature modelling sys-
tems, for example, a geometric model is constructed by using volumet-
ric form-features, but multiple volumetric regions cannot be represented
in a solid model, because of the limitation of the topological structure.

o Geometric shapes should be representable in wireframe, surface, and
solid forms, because in the respective design phases, complete solid
shapes are not always required. However, current geometric models
cannot consistently represent multiple forms of geometric shapes in a
single architecture.

o In current B-rep solid modelling, it is time-consuming to cancel or
modify previous Boolean operations. It is of course easy to reshape
models in CSG modelling, simply because intersections of primitive
objects are not explicitly represented. However, CSG models are only
useful for certain applications, and it is impossible to define shapes by
using intersection lines and points [3]. Consequently, in current solid
modelling techniques, it is difficult to create a 3D geometric model
interactively by trial and error, especially when a 3D geometric model
is defined by a large number of Boolean operations.

The idea of non-manifold geometric modelling [4, 5, 6] seems to be very
promising for solving the above problems [7, 8], because

e Form features can be represented in wireframe, surface, and solid forms
in a single architecture.

o Additional topological elements that do not appear in a resultant shape
can be represented in a single geometric model.

e Boolean operations can be quickly reworked by using the method de-
scribed in this paper.

We think non-manifold geometric modelling will make it possible to de-
velop new geometric modelling systems that are more suitable for design.

To realize a non-manifold geometric modelling system, it is very impor-
tant to investigate the characteristics of non-manifold geometric modelling
minutely, because some conventional geometric modelling techniques are not
adequate for non-manifold geometric modelling. It is essential to define what
is meant by a non-manifold geometric model, because the term non-manifold
is not a well-defined word, and it is possible to give various definitions of
non-manifold geometric models [4, 7, 8, 9].

In this paper, first, we discuss a mathematical definition of non-manifold
geometric models. On the basis of the definition, we then investigate the
characteristics of non-manifold geometric modelling. We will discuss the
topological structure and Euler operations for non-manifold geometric mod-
els. Next, we propose a method that can quickly and arbitrarily rework
Boolean operations. This method makes it possible to create complicated
solid models by trial and error. We also discuss the usefulness of this method
for form-feature modelling.

Mathematical Definition

Non-manifold geometric models can be intuitively understood as combina-
tions of wireframe, surface, and solid models. However, a mathematical
definition is very important [10]. for defining the domain of non-manifold
geometric models unambiguously. One suitable mathematical definition of
non-manifold geometric models is cell-complexes that are subsets of 3D Eu-
clidean space [7, 8]. Figure 1 shows some examples of cell-complexes. We call
a geometric model defined as a cell-complex a complez-based non-manifold
geometric model. The concept of cell-complexes is very suitable for represent-
ing geometric shapes that are meaningful in engineering, because it includes
conventional wireframe, surface, and solid models, or combinations of them.
In addition, since cell-complexes satisfy the Euler-Poincare formula, their
Euler operations can be derived.

d

Figure 1: Examples of cell-complexes

Cell complexes are mathematically defined as sets of n-cells that satisfy
conditions 1, 2, and 3. We define an n-cell as a bounded subset of 3D Eu-
clidean space that is homeomorphic to an n-dimensional open sphere. A
cell-complex and an n-cell are denoted by C' and e)., respectively, and the
dimension of ey and a closure of e, are denoted by dim(ey) and [e,]., respec-
tively.

1. C:U/\:Ae/\
2. lea] —en CHeyldim(e,) < dim(ey),p € A} AEA
J.exNe,=¢ A#FpAeApeA

The first condition means that 3D cell-complexes can be represented by
a collection of 0-cells, 1-cells, 2-cells, and 3-cells. In geometric modelling,
0-cells, 1-cells, 2-cells, and 3-cells can be called vertices, edges, faces, and
volumes, respectively. The second condition means that the whole bound-
ary of each element must consist of lower-dimensional elements. Because of
this condition, a cell-complex is always closed. We do not think that this
condition restricts the flexibility of geometric modelling, because unclosed,
bounded edges or faces have no value in practical CAD applications. The
third condition means that no topological element intersects another. This
condition prohibits self-intersection. We believe that cell-complexes are suit-
able for geometric modelling in product design, and can cover geometric
shapes that appear in CAD applications.

Data Structure

Topological Elements

In boundary representation solid modelling, an object is represented by a
collection of faces, edges, and vertices, but in non-manifold geometric mod-
elling, an object is represented by a collection of volumes, faces, edges, and
vertices. We will refer to these as topological elements. A volume is defined
as a bounded, open, continuous, solid space. The neighborhood of any point
in a volume must be homeomorphic to a 3D open sphere. Figure 2 shows
a solid cube and an empty cube. A solid cube is represented by defining a
volume in a 3D space bounded by faces. When a volume is not defined, as
shown in Figure 2b, the space inside the the box is regarded as a cavity.
When faces and volumes are defined as 2-cells and 3-cells, respectively,
they cannot have cavities and through-holes, because of the definition of
n-cells. However, cavities and holes frequently appear in mechanical prod-
ucts. Therefore, we allow faces with cavities and volumes with cavities and
holes. Even if topological elements have cavities and through-holes, theo-
rems on cell-complexes can be applied by dividing them into sets of n-cells.
To represent topological elements with cavities, shells and loops are intro-
duced, because a topological element with cavities has multiple disconnected
boundaries. As shown in Figure 3, a loop consists of connected edges, or an

avolume no volume

Figure 2: Representation of a solid cube and an empty cube

isolated vertex, and a shell consists of connected faces and wire-edges, or an
isolated vertex.

00

{b)

(a)

Figure 3: Representation of disconnected boundaries: (a) shells, (b) loops

Topological Structure

Topological elements are hierarchically interrelated. A lower-dimensional
element is used as the boundary of each of several higher-dimensional ones.
The hierarchical relationship of topological elements is shown in Figure 4.
In this structure, a topological element can be linked with several types of
higher-dimensional topological element. A face can be linked with a complex
or volumes, depending on whether it is used as a laminar-face or as the
boundary of one or two volumes. An edge can be linked with a complex,
shells, or loops. If an edge is directly linked with a complex or a shell, it
is used as a wire-edge in a 3D space or a volume. When an edge is linked
with loops, it is used as the boundary of each of several faces. A vertex can
be linked with edges, loops, a shell, or a complex. When a vertex is linked

5

with loops, a shell, or a complex, it is used as an isolated vertex in a face, a
volume, or a 3D space, respectively.

Figure 4: Hierarchical structure of topological elements

In order to manipulate topological elements efficiently, ordering informa-
tion as well as adjacency information must be maintained. The order of edges
around a face and of edges around a vertex are well-known examples of or-
dering information in solid modelling. They have been typically represented
by the winged-edge structure or its variations. In non-manifold geometric
modelling, however, it is also necessary to maintain the order of faces around
an edge, which is called the radial-edge order [5]. Since radial-edge orders
are very useful for detecting closed spaces bounded by faces, they should be
explicitly maintained in order to manipulate geometric models with multiple
volumes effectively.

Extended Euler Operators

Euler Operations

Topological operations are used to generate and modity the topological struc-
ture of geometric models. In solid modelling, the most popular topological
operations are Euler operations [11, 12, 13]. Euler operators are known to
have the following useful features:

o All high-level topological operators, such as generation of primitive ob-
jects or lift operations, can be defined by a sequence of Euler operations.

e Euler operators maintain the consistency of the topological structure.

o An Euler operator has an inverse operator. Therefore, if a high-level
operator is defined by Euler operators, the inverse operator of the high-
level operator can be easily obtained as a sequence of inverse Euler
operators.

However, conventional Euler operators cannot manipulate non-manifold
objects, because FEuler operators are determined according to the following
Euler-Poincare formula, but the formula is not satisfied by non-manifold
objects:

v—e+ f—r=2s—h) (1)

where, v, e, and f are the numbers of vertices, edges, faces, respectively, r is
the number of rings that are cavities in faces, s is the number of shells that
are continuous surfaces, and h is the number of holes. However, this formula
is based on the fact that a solid model has only one volume that is adjacent
to all other topological elements. A counterexample of formula (1) is the
object in Figure 1c. This object consists of 10 vertices, 17 edges, 10 faces,
and one shell, and thus v —e+ f —r =3 and 2(s — h) = 2.

Euler-Poincare Formula for Non-Manifold Geometric
Models

It is known that cell-complexes satisfy the following formula, which is called
the Euler-Poincare formula for finite cell-complexes. Here, «; is the number
of i-dimensional cells, and b; is the i-dimensional Betti number of cell-complex
objects. ' '

Vico(=1) i = BiLo(=1)'b; (2)

The formula for non-manifold geometric models can be obtained by dividing
topological elements with cavities and holes into sets of n-cells and applying
formula (2). The formula for non-manifold geometric models is as follows.
This formula is satisfied by every non-manifold geometric model defined in
this paper.

v—e+(f=r)—(V=V,+V)=C—-C,+C. (3)

where v, e, f, V, and C are the numbers of vertices, edges, faces, and volumes,
and complexes, respectively, r is the number of rings, Vh is the number of
holes through volumes, Vc is the number of cavities in volumes, Ch is the
number of holes through complexes, and Cc is the number of cavities in
complexes. Since this formula is based on the Euler-Poincare formula for
cell-complexes, we call formula (3) the Fuler-Poincare formula.

We believe that this formula can be easily understood by application pro-
grammers, because it is described by means of topological elements, cavities,

and through-holes, which are natural in engineering. Figure 5 shows appli-
cations of formula (3). In Figure 5a, the object has one hole topologically,
because one closed path exists in the sequence of wire-edges. In Figure 5b,
the volume has two cavities. One is an isolated vertex, and the other is a 3D
empty space bounded by faces. In Figure 5c, the object has a non-manifold
edge. In Figure 5d, the object consists of two volumes. One has a hole
through the volume, and the other fits into the hole. Therefore, the space
occupied by this object is a solid cube with no holes and no cavities.

17, =24, =12, r=0
Wel, Vh=0, Vo=p
1, Ch=0, Cce1

B (1) (V- VR Vg e
$-Ch+Co=2

V=10, 9&17| TT?U, =0
Va2, Wh=(, VoG
Cwt, Ch=0, o=

Vo (E-r)-(V - VhaVe) = 1
C-ChsCg = 1

v=18, 8=24, f=12, rud
Va2, Vh=1, Ve=D
C=1. Ch=0, Gg=0

v-g+(f-r-(V-VhaVe) = 1
C-Ch+Cco=1

r

Figure 5: Examples of the application of the Euler-Poincare formula

Extended Euler Operators

Topological operators for non-manifold geometric modelling can be deter-
mined according to formula (3). We call these operators extended Fuler
operators. Theoretically, only nine independent Euler operators and their
inverse operators are sufficient to define all complex-based non-manifold ge-
ometric models. In practice, however, more than nine Euler operators are
needed, because it is not efficient to describe high-level operators with only
nine Euler operators. The extended Euler operators used in our system are

shown in Figure 6. In this figure, reverse operators (arrows to the left) are
enclosed in brackets, and a cavity and a hole in a volume are denoted by
Vcavity and Vhole, and a cavity and a hole in a complex are denoted by
Ccavity and Chole.

High-level operators, such as local operations and Boolean operations, can
be described by a sequence of Euler operators. The sequence of operations for
a lift operation, for example, is shown in Figure 7. A lift operation modifies a
shape by sweeping specified topological elements. In this example, a face and
a wire-edge are swept, and a solid with a laminar-face is generated. In this
operation, five kinds of Euler operator are used. In Figure 7b, wire-edges are
generated from existing vertices, using make_vertex_edge, and in Figure 7c,
wire-edges are generated between two vertices, using make_edge_Chole. In
Figure 7d, five faces are generated by make_face_kill_Chole, and in Figure Te,
a face i1s generated, and a closed empty box is made by make_face_Cecavity.
In Figure Tf, make_volume_kill_Ccavity defines a volume in a closed space,
and a closed space becomes a solid.

Boolean Operations

Current Status in Reworking Boolean Operations

Boolean operations are among the most popular operations for making solid
models of products. In modelling with Boolean operations, a new solid model
is gradually determined by two intersecting solid models. Some initial solid
models, such as blocks and cylinders, are provided by the system. They are
called primitive objects. There are three types of Boolean operation, which
are called union, difference, and intersection.

Boolean operations are very useful and are used in most solid modelling
systems, but they have serious drawbacks: it is time-consuming to reshape
a B-rep solid model defined by Boolean operations. In CSG modelling, of
course, models are easily reshaped by modifying a CSG tree, but it is also
time-consuming to obtain boundary data.

Figure 8 shows three types of process for reworking a B-rep model. In
Figure 8a, the system maintains only the sequence of operations. In this
case, even when only one previously executed Boolean operation is modified,
all Boolean operations must be executed from the beginning. Therefore, it
is difficult to create a complicated model interactively by trial and error.

In Figure 8b, Boolean operations are constructed by means of Euler oper-
ators. A Boolean operation and its reverse operator are referred to as A, and
A~L. This type of modelling system can quickly undo Boolean operations
by using their reverse operators [14]. However, undo-operations also have
drawbacks. When a Boolean operation applied at an early stage must be
canceled, it is time-consuming to reshape a model by using undo-operations,
because the system must cancel almost all Boolean operations and reapply
them. This is mainly because the data required for the reverse operators
depend on the operation sequence.

i

@)

———

kel venex be

< S

Irvake| kAN rrlgee_ Cishe

SR ‘
q o < rrabedhil]_snne Wil

Niebaikill, laes kilfrakn Chal

Mk |bll] eoqe WERAkE] My

[S —

Makeis] ek KiRmake] e
O @ . 8 -

kol kil werlex, lirg

sl asgr
makefdl]_ecgr klirake] rig SOl rrerye]_ Lo
i i
gt e T P
- "
- -
rahglkif] Lz Loty ST LT

Figure 6: Extended Euler operators

10

Figure 7: Lift operation: lifting a face and a wire-edge

A B A B
T g P B
Ay |[A1_1
® C ® C
™y 7 \///
© © A B ©
I \-\ A;‘ ’1 1!_\(;//
) | IS8
object object object
a by c

Figure 8: Three types of process for reworking a B-rep model: (a) reapplying
all operations, (b) undo-operations, (c) cancel-operations

11

The most preferable reworking operation is a cancel-operation (Figure 8c).
A cancel-operation reworks any Boolean operation at any time. Therefore,
geometric models can be very quickly reshaped, even if they are very com-
plicated objects. However, in current B-rep solid modelling, general cancel-
operations are not realized. Therefore, when a solid model of a complicated
object, such as an engine room, is modified, the model must be regenerated
by a batch process. Cancel-operations are very important for interactive
modelling of complicated objects.

Boolean Operations for Non-Manifold Objects

First, let us consider the definition of Boolean operations for non-manifold
modelling. In complex-based non-manifold geometric modelling, the resul-
tant shape of Boolean operations must satisfy the conditions of cell-complexes.
However, the difference between two primitive objects may generate a shape
without a boundary, as shown in Figure 9a. Therefore, we define a differ-
ence operation as the closure of the difference. Intuitively, the closure adds
topological elements that make up for the lost boundary. The intersection,
shown in Figure 9b, may generate wire-edges or lamina-faces that are degen-
erate forms of faces and volumes, respectively. This shape is a cell-complex,
but wire-edges and lamina-faces are undesirable in most cases. On the other
hand, however, lamina-faces and wire-edges might be useful in some applica-
tions, because they show where the two models touch. Therefore, intersection
operations should have two types: one in which degenerate elements are re-
tained (Figure 9b), and another in which they are eliminated (Figure 9c¢).
Union operations, difference operations, and the two intersection operations
are referred to as @ , ©, @1, and @™, respectively.

Boolean operations are basically dependent on the operation sequence.
In general,

(AeB)sC#Ag(Ba ()

Obviously, Boolean operations do not satisfy the associative law or the com-
mutative law. This is one of the main reasons that the realization of cancel-
operations is difficult.

To solve this problem, we divided a Boolean operation into two opera-
tions: a merging operation, which is independent of the operation sequence,
and an extracting operation, which is dependent on the operation sequence.
Figure 10 shows the process of a Boolean operation. Here, we call the result
of a merging operation a merged object, of which an example is shown in
Figure 10b, and the result of a Boolean operation a resultant object, of which
an example is shown in Figure 10c.

In merging operations, the system calculates the intersections of objects,
and modifies the topological structure. Each topological element of a merged
object has attributes that indicate the original primitive objects. These
attributes are maintained every time the topological structure is modified.
As shown in Figure 10b, a merged object maintains additional topological
elements that do not appear in the resultant object. For this purpose, the
capabilities of non-manifold geometric modelling are used.

12

a b C

Figure 9: The difference and intersections between two primitive objects

The resultant object is obtained by an extracting operation. In extract-
ing operations, the system extracts from the merged object topological el-
ements that correspond to the resultant object, and adds marks to them.
The execution time of this process is very short, because the system does
not execute any geometric calculation or topological modification, but only
traverses topological elements in a merged object. Extracted topological ele-
ments are, of course, dependent on the types and the sequence of operations.
Figure 10c shows the three types of resultant object - union, difference, and
intersection - that are extracted from the merged object.

Merging Operation

In conventional B-rep solid modelling, the original primitive objects are not
left in the resultant shape. When two primitive objects are unified, for ex-
ample, topological elements inside the united object are deleted. Therefore,
the shapes of the original primitive objects are partly lost from the topolog-
ical structure maintained by the system. When the system does not delete
such topological elements, geometric models cannot be manipulated consis-
tently in conventional solid modelling, because these geometric models have
non-manifold conditions. The geometric model in Figure 10b, for example,
has multiple volumes and non-manifold edges shared by four faces. Since
these conditions can be manipulated by means of non-manifold geometric
modelling techniques, it is possible to maintain the shapes of the original
primitive objects in the topological structure.

Figure 11 shows an algorithm for a merging operation. In this example,
A and B are merged. In Figure 11a, Fa and Fb are faces of primitive objects

13

Figure 10: The difference and intersections between two primitive objects

14

A and B. All the topological elements are given attributes that indicate the
original topological elements of primitive objects. In Figure 11b, the system
generates intersecting edges and vertices on each object. If a topological
element is split, its attributes are copied to a split topological element. In
Figure 11c, the system merges the coincident topological elements of each
object in the order of vertices, edges, and faces. The attributes of coincident
topological elements are also merged. If a merged edge is shared by more than
two faces, faces around the edge are sorted to maintain the radial-edge orders.
When two models are merged, volumes may be split. The split volumes are
reconstructed by detecting their boundary faces connected by the radial-edge
pointers. Attributes of reconstructed volumes are also maintained.

The original primitive objects, which have been used to create the merged
object, are maintained as sets of topological elements of the merged object.
Figure 12 shows pointers between a merged object and primitive objects.
Primitive objects have their original topological elements and a list of in-
tersecting topological elements. In this figure, V4 and Vg are the original
volumes of primitive objects A and B, and [Eg, and [E,; are intersecting
edges of A and B. V| , V, , V3, and [F; are volumes and an edge in the
merged object, respectively. When primitive objects are merged, the system
maintains the relationships between the original topological elements and
subdivided topological elements. When intersecting edges and vertices are
generated, they are added to a list of intersecting topological elements. Since
intersecting topological elements exist only when they are shared by two or
more primitive objects, it is necessary to maintain the original topological
elements and intersecting elements separately. Every topological element of
the merged object must be related to at least one primitive object. In merg-
ing operations, the original topological elements are split or merged, but not
deleted. Therefore, the relationship between a merged object and its original
primitive objects can be easily maintained.

Extracting Operations

This section will describe the extraction of shapes defined by Boolean ex-
pressions. In merging operations, primitive objects are represented by sets
of topological elements in the merged object. Therefore, we define Boolean
operations among sets of topological elements. Suppose that the merged ob-
ject is defined by two primitive objects, A and B, and that A and B are
expressed by A(A) and A(B), which are sets of topological elements in the
merged object. In A(A), there are topological elements that are not used as
the boundaries of other topological elements. Such topological elements are
referred to as A(A™); they include volumes, wire-edges, lamina-faces, and
isolated vertices. [A(A™)] expresses A(A™) and their boundaries. Therefore,
[A(A™)] is equal to A(A).

Topological elements of the resultant object are selected according to the
type of Boolean operation. The resultant object is represented by the follow-
ing topological elements. A union set, a difference set, and an intersection
set are denoted by 4, —, and N, respectively.

15

Fa (Fa,Fb)

Figure 11: An algorithm for a merging operation: (a) two primitive objects,
(b) generating intersecting edges and vertices, (¢) merging coincident topo-
logical elements, (b) reconstructing volumes

16

primitive object A

__._—-——.| - Va
merged object — ¥l / :

a

. E

NNV
L. ”\t-f.r_-f yd primtive object B
TN] o] va !

B S

Figure 12: The relationships between the original primitive objects and the
merged object: (a) a list of the original topological elements, (b) a list of
topological elements generated by intersection

o A(A® B) = [A(A™) + A(B™)]

(
e AM(AO B) =[A(A™) — A(B™)]
e AM(A®~ B) = [A(A™) N A(B™)]
e AN(A®* B)=A(A)NA(B)

Figure 13 shows an example for extraction. Model R in Figure 13b con-
sists of the four cylindrical primitive objects shown in Figure 13a. It is
obtained from

R=CeDasAc B

Figure 13¢ shows a section of the merged object. V; indicates the volumes in
the merged object. The interior of each primitive object is

AA™) = (V4 Vo, Vi, Vs, Vi, Vi)

A(B™) = {V2, V5, Vs}

A(C™) = {V5, Vi, Vi, Ve, Vi, Vi)

A(D™) = {Vs, Vi, Vs}

The resultant shape can be obtained from

AR = A(C™) — A(D™) + A(A") — A(B") = {V;, Vi, Vi, Vi)

Shape R in Figure 13b is obtained by adding topological elements on the
boundary of A(R™).

Reworking Boolean Operations

It is very time-consuming to cancel or modify previous Boolean operations
in solid modelling, because a Boolean operation is strongly dependent on
the previous operations. If a Boolean operation can be canceled quickly

17

flval
: vE

Figure 13: The resultant shape extracted from the merged object: (a) four
primitive objects, (b) the resultant object, (¢) volumes in the merged object

18

regardless of the operation sequence, a geometric model can be defined by
trial and error.

When a Boolean operation is implemented by using a merging operation
and an extracting operation, it is possible to remove or modity primitive
objects very quickly. Since primitive objects are maintained as sets of topo-
logical elements in the merged object, the system knows which topological
elements are to be deleted. To remove a primitive object from the merged
object, the system reconstructs the topological structure simply by deleting
the relevant topological elements pointed to by the primitive object. Deleted
topological elements are either pointed to only by the removed primitive ob-
ject, or generated by intersection between the removed primitive object and
another one. This process is very quickly done by local modification. After
the topological structure has been reconstructed, the system reevaluates the
resultant shape.

Geometric models are often reshaped by modifying the shapes of original
primitive objects. Even in this case, cancel operations are very effective. The
reshaping process is as follows:

1. Primitive objects that are to be modified are removed from the merged
objects by using cancel operations.

2. New primitive objects are merged into the merged object.

3. The new primitive objects are reintroduced at the same position in the
Boolean expression, because Boolean operations depend on the order
of operations.

4. The resultant shape is obtained by evaluating the new Boolean expres-
sion.

Figure 14a shows a merged object that consists of 150 primitive objects.
Figure 14b shows the calculation time needed for the modification of primi-
tive objects on an IBM RS6000/730. It took 50.36 seconds for 149 merging
operations, and 0.16 seconds for an extracting operation. This reworking
method is very effective, even if the models are very large.

Form-Feature Modelling

In the representation described in the previous section, any primitive object
can be easily selected, deleted, or modified. These capabilities are useful in
form-feature modelling, where an object is constructed from form-features,
such as steps, chamfers, and grooves. When a form-feature is defined as
a set of topological elements, it can be regarded as a primitive object. In
this case, our modelling method can quickly display, delete, and modify any
form-feature in the model.

We developed a prototype of a form-feature modelling system based on
a non-manifold geometric modelling system. Our form-feature modelling
system can solve the following problems:

19

changs radins
{244 mac)

b

shange width
{0.4E sec)

change radius
{1.03 sec)

delete bole

change ragius
I:'ﬂ.?z EE'E_] ([]12 51’-.‘!'_‘.']

Figure 14: (a) A merged object consisting of 150 primitive objects, and (b)
the calculation time needed for the modification (IBM RS6000/730)

20

e In conventional systems, it is time-consuming to obtain a resultant ob-
ject by modifying existing form-features. In our system, form-features
can be quickly modified.

o When form-features are maintained as sets of topological elements, it
is difficult to maintain intersecting form-features, because the shapes
of the form-features are partly lost, and their topologies are changed
[15]. Our system can maintain intersecting form-features, because the
lost parts of the form-features are maintained in the merged object.

e Many applications, such as constraint-based modelling, need to main-
tain the attributes given to topological elements throughout the whole
design. Since the original topological elements of primitive objects are
maintained by the system, their attributes are also maintained.

Conclusions

A non-manifold geometric modelling system is useful for improving 3D ge-
ometric modelling environments. Some important requirements for imple-
menting such a system have been derived from the mathematical definition
of non-manifold geometric models; it is adequate to define such models as
cell-complexes. Extended Euler operators are useful topological operations
for manipulating these topological elements consistently. One good applica-
tion of non-manifold geometric modelling is in arbitrary reworking of Boolean
operations. Our method can quickly reshape a B-rep solid model constructed
by Boolean operations. It is suitable for design by trial and error, and is also
useful in form-feature modelling.

Acknowledgement

We would like to express our gratitude to Dr. S.Kawabe for his usetul advice,
and to Messrs. K.Shimada, M.Numao, and 5.Shimizu for their technical help
with form-feature modelling. We would also like to thank Dr. M.Koda for
his management support of this research project.

References

[1] P.R. Wilson and M.J. Pratt, A Taxonomy of Features for Solid Mod-
eling’” Geometric Modeling for CAD Applications North-Holland (1988)
pp-125-136

[2] J.R. Dixon et al., "Expert Systems for Mechanical Design: Examples
of Symbolic Representations of Design Geometries’ Engineering with
Computers Springer-Verlag (1987) pp.1-10

21

3]

[10]

[11]

[12]

K. Shimada, M. Numao, H. Masuda, and S. Kawabe, 'Constraint-Based
Object Description for Product Modeling” IBM Research Report RT-
0003 (May 1989), and Computer Applications in Production and Engi-
neering North-Holland (Oct. 1989) pp.95-106

K. Weiler, "Topological Structures for Geometric Modeling” PhD Thesis
Rensselaer Polytechnic Institute (Aug. 1986)

K. Weiler, 'The Radial Edge Structure: A Topological Representation
for Non-Manifold Geometric Boundary Modeling” Geometric Modeling
for CAD Applications North-Holland (May 1986) pp.3-36

K. Weiler, 'Boundary Graph Operators for Non-Manifold Geometric
Modeling Topology Representations’ Geometric Modeling for CAD Ap-
plications North-Holland (May 1986) pp.37-66

H. Masuda, K. Shimada, M. Numao, and S. Kawabe, A Mathe-
matical Theory and Applications of Non-Manifold Geometric Model-

ing” Advanced Geometric Modelling for Engineering Applications North-
Holland (Nov. 1989) pp.89-103

S. Kawabe, K. Shimada, and H. Masuda, ’A Framework for 3D Model-
ing: Constraint-Based Description and Non-Manifold Geometric Mod-
eling” Organization of Engineering Knowledge for Product Modelling in
Computer Integrated Manufacturing Elsevier (Oct. 1988) pp.325-354,
and IBM Research Report TR87-1024 (Nov. 1988)

J.R. Rossignac and M.A. O’Connor, 'SGC: A Dimension-Independent
Model for Pointsets with Internal Structures and Incomplete Bound-

aries,” Geometric Modeling for Product Engineering North-Holland (Sep.
1988) pp.145-180

A.G. Requicha, 'Representations for Rigid Solids: Theory, Methods, and
Systems’” ACM Computing Surveys Vol. 12, No. 4 (Dec. 1980) pp.437-464

B. Baumgart, A Polyhedron Representation for Computer Vision” A FIP
Conf. Proc. Vol. 44 (1975) pp.589-596

[.C. Braid, R.C. Hillyard, and 1.A. Stroud, "Stepwise Construction of
Polyhedra in Geometric Modeling” Mathematical Methods in Computer
Graphics and Design Academic Press (1980) pp.123-141

M. Mantyla and R. Sulonen, '"GWB: A Solid Modeler with the Euler
Operators’ IEEE Computer Graphics Vol. 2 No. T (Sep. 1982) pp.17-31

H. Chiyokura, Solid Modeling with Design Base Addison-Wesley (1988)

M.J. Pratt, A Hybrid Feature-Based Modelling System’ Advanced Ge-
ometric Modeling for Engineering Applications North-Holland (Nov.
1989) pp.189-202

22

[16] P.R. Wilson, 'Multiple Representations of Solid Models’ Geometric Mod-
eling for CAD Applications North-Holland (May 1986) pp.99-113

[17] M. Mantyla, An Introduction to Solid Modeling Computer Science Press
(1988)

[18] C.M. Hoffmann, Geometric and Solid Modeling Morgan Kaufmann
(1989)

23

