A cell-based approach for generating solid
objects from orthographic projections

Hiroshi Masuda and Masayuki Numao.

IBM Research, Tokyo Research Laboratory
1623-19, Shimo-tsuruma, Yamato-shi, Kanagawa 242, Japan
tel: +81-462-73-4889
fax: +81-462-73-7413

Abstract

This paper describes an efficient method for converting orthographic pro-
jections into solid models based on non-manifold topology and the assumption-
based truth maintenance system (ATMS), and then describes an error recov-
ery method for incorrect orthographic projections. A combination of non-
manifold modeling and ATMS achieves excellent performance for conversion
problems. In our method, all solid candidates are maintained by a cellular
model using non-manifold topology. Since a combination of cells in a cellular
model determines the shape of a solid, solid models that match orthographic
projections can be derived by solving constraints between cells and ortho-
graphic projections. A sufficient group of constraints can be expressed as a
set of Boolean equations, which can be solved efficiently by using ATMS. Our
method can even be applied to incorrect draftings. In actual design, many
draftings contain human errors, but conventional methods cannot handle
such incorrect draftings. We discuss methods for detecting inconsistent lines
that should not have been included, or missing lines that should have been
included.

keywords: orthographic projections, solid model, non-manifold, ATMS

INTRODUCTION

Solid models are useful for supporting design and manufacturing. In actual
design, however, 2D draftings are still commonly used, because they are
helptul for specifying functional mechanical parts, and many engineering data
are stored as 2D draftings. 2D-to-3D conversion allows existing draftings to
be used for simulations such as FEM analysis, and will accelerate the shift
of design environments to 3D CAD systems.

Much work has already been done on converting orthographic projec-
tions into solid models [1]-[9]. However, it is difficult to develop a practical
conversion system for the following reasons:

1. Conventional methods are time-consuming, because systems have to
choose solutions from a very large number of potential solid candidates. This
process is basically NP-complete. In addition, since different data structures
are used for representing wireframe, surface, and solid representations, which
appear during the conversion process, it is complicated to maintain relation-
ships between each representation and orthographic projections.

2. Conventional algorithms are constructed on the premise that draftings
are perfect. However, it is impractical for most designers to make perfect
draftings. An investigation of hundreds of orthographic projections in several
companies showed that most draftings had inconsistent lines or missing lines.

Idesawa [1] and Wesley [2] each proposed a well-known method for solv-
ing conversion problems that involves no errors in orthographic projections.
In both methods, first, 3D vertices and edges are calculated by means of or-
thographic projections, and then faces are detected by traversing wireframe
models. In the next step of Idesawa’s method, solid models are searched for as
combinations of faces after unnecessary vertices, edges, and faces have been
eliminated by using knowledge about solid shapes and orthographic projec-
tions. However, this method is very time-consuming, because a tremendous
number of solid candidates can be generated from combinations of faces.
Kim [3] proposed heuristic rules for reducing the number of combinations,
but it is still time-consuming. In Wesley’s method, on the other hand, solid
models are searched for as combinations of primitive solids. After faces have
been detected, regions surrounded by faces are searched for and represented
by primitive solids [4]. Candidate solid models are generated by calculating
the union of primitives, and they are compared with orthographic projec-
tions. Sakurai [5], Gu [6], and Lequette [7] extended this method to deal

with curved surfaces. Yan [8] described a detailed algorithm that improves
efficiency by removing pathological cases in geometric calculation. However,
in these methods based on Wesley’s approach, it is not practical to examine
all combinations of primitive solids, because 2" solid candidates can be gen-
erated from n primitive solids, and it is very time-consuming to calculate and
examine the unified shapes of all combinations of primitive solids. Although
efficient reasoning methods are indispensable, none have been proposed so
far. In addition, none of the proposed methods can handle incorrect draftings.
Aldefeld [9] proposed a solid generation method based on pattern recogni-
tion. A solid model is constructed as a combination of uniform-thickness
partial shapes, which are generated by searching for specific patterns in 2D
representation. However, in this approach, it is difficult to cover the full
semantics of 2D representation.

In this paper, we propose an efficient conversion method based on non-
manifold topology and the assumption-based truth maintenance system (ATMS)
[10], and then propose an error recovery method for incorrect orthographic
projections. A key idea of our method is to use cellular models as interme-
diate models. Cellular models are very powerful for 2D-to-3D conversion,
because they can maintain all possible solid candidates in a single model,
and are useful for deriving constraints between solids and orthographic pro-
jections. A sufficient group of constraints are expressed as a set of Boolean
equations, and they are quickly solved by ATMS. Our conversion algorithm
is so simple and flexible that it can easily be extended to cope with incorrect
draftings.

PROCESS OF CELL-BASED CONVERSION

In this paper, it is supposed that orthographic projections consist of straight
lines, circles, or ellipses, and that solid models consist of planes, cylinders,
cones, spheres, and tori, in which the directions of cylinders, cones, and tori
are parallel to those of the X, Y, or 7 axes.

Figure 1 shows the process of our conversion method. In the first two
steps, a wireframe model is generated from corresponding 2D lines in ortho-
graphic projections, and a surface model is generated by searching loops in
the wireframe model. These steps are same as in Idesawa’s and Wesley’s
methods [1, 2]. A key feature of our method is that a cellular model is gen-

erated as an intermediate representation. An example of a cellular model is
geometric model A in Figure 2. Since cellular models include edges shared
by more than two faces, they cannot be represented by data structures for
2-manifold solid models. In our system, a non-manifold geometric model-
ing system is used for managing all the geometric models inside the dotted
line in Figure 1. The data structure of our modeling system is similar to
the radial-edge structure proposed by Weiler [11]. Detailed discussions of
our non-manifold geometric modeler may be found in previous publications
[12, 13].

In Figure 2, cellular model A has three cells, which are referred to as ¢y, ¢,
and ¢3. When one or more of these cells are selected, the boundary elements
of solid shapes can be quickly extracted from a cellular model by traversing
topological elements in the data structure [12]. Figure 2 shows solid shapes
extracted from cellular model A. Solid models B and ' are obtained by
selecting {cy, ¢2,¢3} and {¢q, ¢3}, respectively, and extracting their boundary
elements.

After a cellular model has been generated, combinations of cells that
match the given orthographic projections must be searched for. Such com-
binations are calculated by solving constraints between a cellular model and
orthographic projections. Constraints are derived by topological relation-
ships between edges and cells, and by correspondences between edges and
lines in projections. For example, in cellular model A in Figure 2, e, appears
in a solid shape if ¢; and ¢3 are selected. In this case, ¢; is related to {cq, c5}.
If ¢1 is projected onto line d in a 2D view, ¢ is also related to d, and therefore
d is related to {cq, c3}. In this way, orthographic projections are constrained
by combinations of cells. Solid shapes that satisfy the given orthographic
projections are obtained by solving these constraints. All constraints can be
described as Boolean equations, which can be solved by several reasoning
methods. In our system, ATMS is used as a solver, because it is efficient and
flexible for conversion problems.

GENERATION OF CELLULAR MODELS

This section describes geometric modeling for 2D-to-3D conversion. As
shown in Figure 1, wireframe, surface, and cellular models are gradually
generated from orthographic projections. They can be uniformly managed

Orthographic]
projections J

Generating
3D wires

Wireframe model

y Detecting loops

3 R

Surface model

\

| Detecting cells Constraints
(Boolean
[Cellular mode | equations)

\

J

J

Solutions l

Extraction

{ Solid models] Solver
(ATMS)

Non-manifold geometric modeler

Figure 1: Process for converting orthographic projections into solid models

Figure 2: A cellular model and extracted solid models

by means of cell-complex-based Euler operators proposed by the present au-
thors [12]. The whole modeling process is shown in Figure 3. Each geometric
model is generated as follows.

Pre-process for curved surfaces

When 3D edges are calculated from corresponding lines in three 2D views,
projections of silhouette edges and tangency edges may not appear in each
orthographic projection. Sakurai solved this problem by classifying types of
vertices and edges [5], but we solve it more simply by drawing additional lines
for quadric surfaces and tori. This method is useful for avoiding exceptional
processes during 3D geometric modeling.

Additional lines to be drawn are illustrated in Figure 4. This figure shows
projections of a solid shape that consists of a cylinder, a torus, and planes,
where solid lines represent the original lines, and dotted lines represent can-
didate projections of silhouette or tangency edges. Unnecessary additional
lines may be drawn, but they do not have any side effects in our algorithm.
Additional lines for the cylinder are marked by circles and ones of the torus
by squares.

Additional lines for cylinders or cones are drawn by extending straight
lines from the extrema of circles or ellipses to other projections. In this figure,
dotted lines with circle markers are drawn by extending lines as indicated
by the arrows. The range of each dotted line is determined compared with
parallel solid lines in the same view. In the cases of spheres and tori, a
pair of circles, each marked by a black triangle, are detected in each of the
top and side views, and the corresponding solid circle line is detected in the
front view. Since pairs of circles and their corresponding circles determine
candidate surfaces, additional straight lines and circle lines can be drawn as
shown by the dotted lines with square markers.

Wireframe model

3D vertices are calculated from triplets of 2D points. When the coordinate
values of 2D points in the front, top, and side views are Py(xs,yy), P2y, 21),
Ps(ys, z5) , respectively, and they satisfy

xf = xt? yf - y57 2t = 257

Figure 3: Modeling process

Figure 4: Additional lines for curved surfaces

a 3D vertex is generated at (zy,yy, z;). By examining all the possible triplets,
all 3D vertices are obtained.

A 3D edge is generated by examining the connectivity of two 3D vertices.
By examining all pairs of 3D vertices, a wireframe model is obtained. Here,
a pair of 3D vertices are referred to as vy and v, and their corresponding 2D
points are referred to as Py and Py; in the front view, and P}y and Py in the
top view. When the three pairs < Py, Ppy >, < Py, Py > and < Py, Py >
are equivalent or connected by a line in the projection, a 3D edge is defined
and its equation is calculated. 3D edges maintain pointers to corresponding
2D lines in each projection. The relationships are maintained during the
whole modeling process.

Surface model

In the next step, a wireframe model is converted into a surface model by
defining face elements. Faces are detected by traversing loops in a wireframe
model. Since the types of surfaces are limited to planes, cylinders, cones,
spheres, and tori, equations of faces can be determined by a pair of con-
nected edges that are not on the same curve. The equations of planes are
determined by pairs of two straight edges, the equations of cylinders and
cones are determined by pairs of straight and circular edges, and the equa-
tions of spheres and tori are determined by pairs of circular edges. When
the equation of a surface is determined, loops are searched for on the sur-
face. Figure 3 (c) shows loops on a plane. In this example, when edge e; is
selected as the starting edge, edge es, which is the first clockwise edge of ey,
is selected as the next one, and finally loopl is traversed counter-clockwise.

When loops are detected, faces are defined and embedded in a wireframe
model. If two faces intersect, they are subdivided by generating intersection
edges, as shown in Figure 3 (c). If a face includes another face, it becomes a
face with holes.

Cellular model

A cellular model is generated by detecting regions surrounded by faces and
maintaining them as cells in the data structure. In the radial-edge structure
[11], cells are very quickly searched for by traversing adjacent relationships

10

around edges. When a cell includes another cell, it becomes a cell with
cavities.
In Figure 3, nine cells are detected. They are shown in Figure 3(d).

Extraction of boundary elements

When a set of cells is selected, topological elements on the boundary are
selected as follows:
1. When only one adjacent cell of a face is a selected one, the face is a
boundary element.
2. Edges and vertices on boundary faces are also boundary elements.
3. When a boundary edge is shared by two faces on the same surface, it is
eliminated.

The solid shapes B and (' in Figure 2 can be extracted by following these
steps. The solid shape becomes a solution, when projected views of the se-
lected topological elements coincide with the given orthographic projections.

REASONING BY ATMS

The next problem is to search for appropriate solid shapes in 2" candidates,
which can be extracted from a cellular model with n cells. In this section, a
new reasoning method is proposed for obtaining solid shapes that match the
given orthographic projections. A sufficient group of constraints is described
as a set of Boolean equations, which are solved by using ATMS.

ATMS

ATMS is normally used for dependency management of other inference sys-
tems, such as rule-based systems [10], but it has its own inference mechanism
based on propositional logic, and we use it as a Boolean equation solver.
ATMS basically accepts Horn clause rules of the form

L1y .eey Tpp = N
which means 7if all of xq,...,x; are true then n should be true” (material

implication), and
Ty, ., = False.

11

which means "at least one of w4, ..., x;, is false” (nogood conditions). Each
symbol (&1, ...,2,,n) in the rule is either an assumption or a variable: a
variable is derived by a rule, if it appears in the right-hand side of the rule.
Therefore, the set of rules defines the chain of derivation from the assump-
tions to the variables; that is, some variables are derived from other variables,
each of which is derived from other variables, and so on, until the variables
are derived from the set of assumptions. The nogood condition, on the other
hand, defines the sets of variables or assumptions that cause inconsistency.
The basic function of ATMS is to calculate the sets of assumptions which
support the variables and the sets of assumptions that cause contradiction.
Its goal is to assign consistent sets of assumptions to each variable.

Basic terminology of ATMS

The following terms and descriptions are used in this section:

e An assumption is a propositional symbol that is presumed to be true
and that cannot be deduced. It is denoted as an uppercase letter:

O, Co, ...

o A variable is a propositional symbol that is defined by a justification.
It is denoted by a lowercase letter: e, eq,

o A justification is a Hone clause that defines a derivation. It is described
as a rule: xq,...,x; = n.

e An environment is defined as a conjunction of assumptions that sup-
port the variable. It is denoted by C1C5. An environment should be
minimal, that is, it should not contain any other environments as sub-
sets.

o A label is defined as a set of environments that support the variable.
For example, when the variable x is true in environment C;C5 or (153,

the label of x is {C,Cy, C1C5}.

e A nogood environment is defined as a conjunction of assumptions that
cause inconsistency. The nogood environment is derived from the no-
good rule: zy...x; = nogood.

12

e A maximum consistent environment 1s defined as an environment that
cannot maintain consistency when more assumptions are added.

Justifications for conversion problems

It ATMS is used as a constraint solver, there is a problem as to which compo-
nents of cellular models and orthographic projections should be represented
as the ATMS assumptions, variables, and justifications. We will define the
problem as follows:

1. C; expresses an assumption that cell ¢ is selected, and C; expresses an
assumption that cell ¢ is not selected. When assumptions are defined
as cells in a cellular model, every justification can be deduced to the
conditions of cells.

2. e; expresses a proposition that edge j in a cellular model is used as an
edge of a solid shape.

3. di expresses a proposition that line & in orthographic projections ap-
pears in projected lines of a solid shape.

Solid shapes that match the given orthographic projections are derived
as sets of cells by means of the following justifications:

Justification 1: Solid models are related to orthographic projections.

All lines in orthographic projections must appear in projected lines of
a solid shape. When the original orthographic projections consist of lines
1,2,n, the following justification represents the condition that projections

of solid shapes must include all lines in orthographic projections. Additional
lines for silhouette and tangency edges are not included in this justification.

dldz...dn = solid.

Justification 2: Orthographic projections are related to 3D edges.

13

When 3D edges 1,2, ...,n are projected onto line ¢ in a 2D view, at least
one of the n edges must appear in a solid shape. This condition is described
by the following justifications:

e = d;.

€y = d;.

€, = d;.

Justification 3: 3D edges are related to cells.

Edges in a cellular model appear in a solid shape according to neighboring
cells. In Figure 5, there are four cells around edge 1. Edge 1 appears in solid
shapes that have the following combinations of cells:

Ci1CyC3Cy, C1Cy0sC, CiCL0sCy, C1CRCsCy,
CiCy 03747 C1CyC3Cy) C1C2C5Cy) [enereon

Each environment is described as a justification such as

Cl 020304 = €q.

Nogood Condition 1: Cells.
C, and (] cannot both be true, because of the definition. Therefore,

C,C; = nogood.

Nogood Condition 2: Intersecting edges.

Intersecting edges may be generated when faces intersect as shown in
Figure 3(c). Such edges must not appear in a solid shape, because they are

14

not drawn in the original orthographic projections. Intersecting edge e; does
not appear by adding

€1 = nogood.

Nogood Condition 3: Non-manifold conditions.

If non-manifold objects are not desired, environments for non-manifold
conditions should be added as nogood. For example, if a non-manifold shape
is generated by Cy,Cy, Cs, and (Y, the following condition is added:

C1CL,C5Cy = nogood.

Nogood Condition 4: Additional lines.

Additional lines may be drawn in orthographic projections for managing
silhouette edges and tangency edges. If edge 1 is generated by using addi-
tional lines, it must be a silhouette or tangency edge. Therefore, when a
combination of cells around edge 1 generates neither a tangency edge nor a
silhouette edge, the combination must be specified as nogood.

Computation of the solution

From the above justifications, ATMS computes the environment of each vari-
able by means of the label update propagation algorithm [14]. Every time
a justification is added, ATMS renews the labels of ¢;, d;, and solid, taking
account of the nogood environments. The label of solid, which is a set of
combinations of cells, expresses candidate solutions.

The environment represents necessary conditions to hold the variable: the
environment may not contain all the assumptions necessary to solve the prob-
lem. Therefore, we have to expand the environment by adding assumptions
until no other assumptions can be added without the combination becom-
ing nogood. This expanded environment is called the maximum consistent
environment. For example, if a cellular model consists of two cells, then

15

Figure 5: Cells around an edge

we want to know whether each of the cells is selected or not. But some-
times the environment consists of only one assumption, corresponding to one
cell. In this case, we have to expand the environment to find the solutions.
Figure 6 shows how to obtain the maximum consistent environments. For
simplicity, let us consider a case in which only cells 1 and 2 exist in a cellular
model, and suppose that the nogood environments are {C,Cs, C,C7, CyCy},
and that the label of solid is calculated as {C}}. Since environments that
include C,C,, C1Cy, or C3,C5 are inconsistent, environments above the dot-
ted line in this lattice are nogood. Environments in the label of solid, which
include ', are shown by bold lines. The maximum consistent environments
are connected by bold lines and exist below the dotted lines. In this example,
the solution is {C;C5}.

Since the maximum consistent environments are searched for only in the
superset of the label of solid, solutions can be effectively found.

Results

Figure 7(a) shows an example to which this method was applied. Since the
orthographic projections in (a) are ambiguous, multiple solutions exist. A
cellular model is shown in Figure 7(b), which consists of 10 cells. In this
example, 241 justifications and 42 nogood conditions are added to ATMS. 16

16

C1c1C2C2

N

C1Cic2 C1C1C2 cLc2e cicae2

Figure 6: Lattice of potential environments

17

solutions are obtained by searching for the maximum consistent environments
if hidden lines and solid lines are not distinguished. Four of the 16 solutions
are shown in Figure 7(c). The elapsed times for modeling and reasoning in

Figure 7 were 0.20 seconds and 0.21 seconds , respectively, and the total was
0.41 seconds.

Figure 7: Ambiguous orthographic projections

Table 1 shows the elapsed time for conversion of several examples on an
IBM RS/6000-980. In the example shown in Figure 3, 13 solid shapes are

obtained as solutions, and the total elapsed time was 0.30 seconds. Fig-

18

ure 8 shows more complicated orthographic projections. Solutions of these
orthographic projections are uniquely determined. The elapsed times for
converting them are shown in Table 1. The results show that our method’s

performance is excellent in comparison with those of existing methods.

Fxample Number of | Number of Elapsed time (seconds)
cells solutions Modeling ‘ Reasoning ‘ Total
Fig. 3 9 13 0.14 s 0.16 s 0.30 s
Fig. 7 10 16 0.20 s 0.21 s 0.41 s
Fig. 8a 7 1 0.82 s 0.30 s 1.12 s
Fig. 8b 17 1 3.22 s 0.47 s 3.69 s
Fig. 8c 24 1 3.31 s 6.52 s 9.83 s

Table 1: Elapsed times for conversion of orthographic projections (IBM
RS/6000-980)

INCORRECT DRAFTINGS

In actual design, many draftings contain human errors, but conventional
methods cannot handle such incorrect draftings. In this section, two meth-
ods are proposed for generating solids from incorrect orthographic projec-
tions. Errors are classified as inconsistent lines, which should not have been
included, or missing lines, which should have been included. The two cases
are discussed separately.

Inconsistent lines

First, let us suppose that draftings have inconsistent lines but no missing
lines. Figure 9 shows orthographic projections that have inconsistent lines
and match no solid shapes. It is very important to detect and recover errors,
because it is difficult for most designers to find trivial errors such as this case.

When a search for solids that match three projections fails, it is reason-
able to search for solid shapes that match two or one projections. By using

19

Figure 8: Orthographic projections and generated solid models

20

Figure 9: Orthographic projections that have inconsistent lines

21

this criterion, if at least one of three projections is correct, proper solid can-
didates can be calculated. Such solid shapes are very easily searched for by
modifying Justification 1 in the above. Here, the front view, the top view,
and the side view are referred to as vy, vy, and vg, respectively, and variables
that represent lines in these 2D views are referred to as {dpy,dpa,...,dp,},
{dr1,dra, ... dr, }, and {ds1,dss, ..., ds, }. The justifications for these views
are as follows:

Justification 1.1: Fach projection is related to lines.
dFldFZ---de = VF
dTldTZ---qu = U7
ds1dsy...ds, = vg

The following are justifications for solid shapes that satisty two or three pro-
jections:

Justification 1.2: Solid models are related to two projections.
vE v = solud.
vp vg = solid.
vrvg = solud.

When solutions cannot be obtained by Justification 1.2, solid shapes that sat-
isfy at least one projection are calculated by using the following justifications.

Justification 1.2’: Solid models are related to one projection.
vEp = solid.

v = solid.
vg = solid.

When multiple solid shapes are calculated, an appropriate solution is
selected by the designers. Inconsistent lines are detected by comparing or-
thographic projections and projected lines of a generated solid shape. Figure
10(a) shows a solid shape that satisfy two projections in Figure 9. Figure
10(b) shows a detected inconsistent line, which must be eliminated to gener-
ate solid shape(a).

22

(b)

Figure 10: Detection of inconsistent lines. (a) A generated solid model. (b)
The detected inconsistent line.

Missing lines

Actual draftings may contain missing lines. In particular, simple hidden lines
are often omitted. If some lines are not drawn in orthographic projections,
sufficient 3D edges cannot be generated, and therefore proper cellular models
cannot be obtained. In such cases, it is necessary to compensate for missing
lines. Since it is impossible to compensate for arbitrary missing lines without
knowledge about products, the missing lines are assumed to be vertical or
horizontal straight lines.

Figure 11 shows orthographic projections containing a missing line and a
generated wireframe model. When a wireframe model is generated from these
projections, sufficient edges are not generated. Comparison of the wireframe
model and the orthographic projections reveals that the bold lines in Figure
11 do not correspond to the wireframe model. These bold lines obviously
relate to missing lines in the top or side views. Here, so that 3D edges can
be generated by using bold lines, supplementary horizontal and vertical lines
are added to the top and side views. Supplementary lines are generated by
extending from the end points of bold lines, as shown in Figure 12(a). Since

23

the supplementary lines are merely candidate missing lines, they must not
be included in Justification 1. The constraints to be solved are the same as
those in draftings with no errors. The solution for this example is obtained
as shown in Figure 12(b). The solid shape is then compared with the original
orthographic projections in Figure 11, and missing lines are determined as
illustrated by the bold line in Figure 12(c).

O

Figure 11: Orthographic projections that have missing lines and a generated
wireframe model

In general, missing lines are compensated for as follows:

1. If missing lines are suspected after comparison of a wireframe model
and orthographic projections, horizontal and vertical lines are added so
that every 2D line in the original orthographic projections corresponds
to at least one 3D edge. The wireframe model is then calculated again,
and a surface model is generated.

2. Missing lines are searched for by comparing a surface model and or-
thographic projections. If missing lines are suspected, horizontal or

24

()

Figure 12: Recovery of missing lines. (a) Candidate missing lines that are
compensated for. (b) The generated solid shape. (c) The detected missing
line.

25

vertical lines are added, and the surface model is recalculated from the
beginning. A cellular model is then generated.

3. Similarly, by comparing with the cellular model, missing lines are searched
for, and if needed, the cellular model is calculated again.

The method for recovering missing lines is used in combination with the
one for detecting inconsistent lines. When proper solutions are not obtained
after missing lines have been recovered, solids that satisfy two or one projec-
tions are searched for.

Results

The elapsed times for Figures 9 and 11 were measured. When these draftings
contain no errors, the elapsed time was 0.72 seconds on an IBM RS/6000-980.
For Figure 9, the elapsed time for generating a solid and detecting inconsis-
tent lines was 1.03 seconds in total. For Figure 11, the total elapsed time for
generating a solid model and detecting missing lines was 1.09 seconds. The
elapsed times when draftings contain errors is a little longer, because reason-
ing is applied twice for Figure 9, and candidate missing lines are compensated
for in the case of Figure 11.

This method is very efficient and powerful for detecting human errors in
orthographic projections.

CONCLUSION

This paper has described a new conversion method based on non-manifold
topology, cellular representation, and ATMS.

1. Non-manifold topology is suitable for constructing 2D-to-3D conver-
sion systems, because it uniformly manages wireframe models, surface
models, cellular models, and solid models.

2. Cellular representation based on non-manifold topology is a very pow-
erful way of representing a very large number of potential solid can-
didates. It allows various solid shapes to be extracted very quickly.
Cellular models are also useful for deriving constraints between 3D
shapes and orthographic projections.

26

3. ATMS is very efficient for solving Boolean equations of conversion prob-
lems, and it is so flexible that our conversion algorithm can be easily
enhanced to handle inconsistent lines.

Our method was applied to complicated examples as shown in Figure 8, and
the results indicate that it achieves excellent performance.

So far, very few ways of converting incorrect draftings have been proposed,
although such draftings are very common in actual design. This paper has
proposed two methods for handling incorrect draftings:

1. One method is for detecting inconsistent lines. When no solids can
be searched for, solid shapes that match one or two projections are
searched for. Inconsistent lines are detected by comparing the given
orthographic projections and projected lines of a solid shape.

2. The other method is for recovering missing lines. If the proper cellular
model cannot be obtained from orthographic projections, horizontal
and vertical lines are added in the orthographic views to satisty the
condition that all 2D lines should correspond to at least one edge in a
3D model. Here, the missing lines are limited to vertical and horizontal
lines, in order to reduce the number of candidate missing lines.

Method 1 does not work when all the projections are incorrect, but it can
be easily extended to cover other conditions, in which, for example, only holes
or only boundaries are correct. It is also possible for designers to specity such
conditions interactively. Method 2 is intended to cover a large proportion of
actual draftings, but it cannot convert draftings that lack essential informa-
tion, which is usually supplemented by standards, conventions, knowledge,
and experience. We intend to tackle this problem by following a rule-based
approach.

Finally, our conversion system is written in C++ and runs on an IBM
RS/6000. It was implemented on our own non-manifold geometric modeler
and ATMS, which were developed for general purposes.

ACKNOWLEDGMENTS

The authors would like to thank S. Shimizu, who implemented the ATMS
[15]. We also thank H. Matsuzawa, who developed an interface module with

27

a 2D CAD system, and K. Inoue and A. Okano, who helped develop our
GUL

References

[1] Idesawa, M ‘A System to Generate a Solid Figure from a Three View’
Bulletin of the Japan Society of Mechanical Engineering Vol.16 (1973)
pp 216-225

[2] Wesley, M A and Markowsky, G ‘Fleshing Out Projections’ IBM Journal
of Research and Development Vol. 25 (1981) pp 938-954

[3] C.Kim, M.Inoue, and S.Nishihara 'Heiristic Understanding of Three Or-
thographic Views,” Journal of Information Processing Vol.15 No.4 (1992)
pp 510-518

[4] Markowsky, G and Wesley, M A ‘Fleshing Out Wire Frames’ IBM Journal
of Research and Development Vol. 24 (1980) pp 582-596

[5] Sakurai, H and Gossard, D C ‘Solid Model Input through Orthographic
Views’ Proc of SIGGRAPH’83 Vol.17 No.3 (1983) pp 243-247

[6] K.Gu, Z.Tang, and J.Sun, 'Reconstruction of 3D Objects from Ortho-
graphic Projections,” CG Forum, Vol.5 (1985) pp 807-811

[7] R.Lequette, "Automatic Construction of Curvilinear Solids from Wire-

frame Views,” Computer Aided Design Vol.20 No.4 (1988) pp 171-180

[8] Q.Yan, C.L.Philip, and Z.Tang ’Efficient Algorithm for the reconstruction
of 3D objects from orthographic projections,” Computer Aided Design
Vol.26 No.9 (1994) pp 699-717

[9] B.Aldefeld, ’On Automatic Recognition of 3D Structures from 2D Rep-
resentations,” Computer Aided Design, Vol.15 No.2 (1983) pp 59-64

[10] de Kleer, J ‘An Assumption-Based Truce Maintenance System’ Artificial
Intelligence Vol.28 No.2 (1986) pp 127-162

[11] Weiler, H ‘Topological Structures for Geometric Modeling” PhD. Thesis,
Rensselaer Polytechnic Institute (1986)

28

[12] Masuda, H, Shimada, K, Numao, M and Kawabe, S A Mathemati-
cal Theory and Applications of Non-Manifold Geometric Modeling’ Ad-

vanced Geometric Modeling for Engineering Applications, North-Holland
(1989) pp 89-103

[13] Masuda, H ‘Topological Operators and Boolean Operations for
Complex-Based Non-Manifold Geometric Models’ Computer Aided De-
sign Vol.25 No.2 (1993) pp 119-129

[14] deKleer, J ‘A General Labeling Algorithm for Assumption-Based Truth
Maintenance’ Proc. of AAAT (1988) pp 188-192

[15] Shimizu S, Inoue K and Numao M ‘An ATM-Based Geometric Con-
straint Solver for 3D CAD’ Proc. of Tools For Artificial Intelligence (1991)
pp 282-290

29

