
 1

Reconstruction of Polygonal Faces from Large-Scale Point-Clouds
of Engineering Plants

Hiroshi Masuda1, Takeru Niwa2, Ichiro Tanaka3 and Ryo Matsuoka4

1The University of Electro-Communications, h.masuda@euc.ac.jp
2 The University of Electro-Communications, takeru.niwa@euc.ac.jp

3Tokyo Denki University, tanaka@cck.dendai.ac.jp
4The University of Tokyo, matsuoka@nakl.t.u-tokyo.ac.jp

ABSTRACT

The recent progress of mid-range and long-range laser scanners makes it possible to
capture dense point-clouds of manufacturing plants. 3D models of manufacturing
plants are useful for simulating the reorganizing of production lines. Since point-
clouds are not structured and very large, it is often required to convert point-clouds
into more concise models. So far, researchers have studied shape reconstruction of
pipe structures by detecting cylindrical surfaces and estimating the lengths of the
cylinders. On the other hand, few researches have discussed to extract polygonal faces
from large-scale point-clouds. Planar faces may have very complicated boundaries,
because point-clouds are noisy and often occluded by other surfaces in manufacturing
plants. In this paper, we propose an efficient method for constructing simplified
polygonal faces from large-scale point-clouds. In our method, we map each point-cloud
onto a 2D image and detect bounded planar faces in the 2D image. Our method allows
us to construct polygonal faces in a practical calculation time.

Keywords: shape reconstruction, point cloud processing, reverse engineering.
DOI: 10.3722/cadaps.2014.xxx-yyy

1 INTRODUCTION

The recent progress of mid-range and long-range laser scanners makes it possible to capture dense
point-clouds of engineering plants. Phase-based laser scanners are typically used to survey engineering
plants, because they can capture tens of millions points within a few minutes. When a engineering
plant is surveyed at intervals of 6.3 mm at the distance of 10 m, the number of points is about fifty
millions per each scan. Since a manufacturing plant has to be measured at dozens of places for
reducing unmeasurable areas, the total amount often reach billions of points.

3D models of manufacturing plants are useful for simulating reorganization of production lines.
The engineers of process planning have to evaluate various plans. Then as-is 3D models are very
useful, because they can precisely predict feasibility of planes by estimating collisions. As-is 3D
models are also useful for inventory management of engineering plants.

Although point-clouds are promising for supporting reorganization and maintenance tasks, raw
point-clouds are not convenient, because they are not suitable for shape manipulation and their data
sizes are too large to handle with common PCs.

It is often required to convert point-clouds to simplified surface models. Recently, it is becoming
common to survey large-scale fields using laser scanners, and researchers have been developing
methods that can process huge point-clouds. While the computer graphics community tends to
roughly generate 3D models of building, cities and indoor scenes [3][8-9][11], the CAD communities
have studied methods for generating 3D models as precisely as possible. When 3D models are used for

 2

estimating renovation plans or inventory management, requirements for precision of as-is models are
typically 3mm – 10mm.

So far, researchers in the field of CAD have proposed shape reconstruction of pipe structures from
large-scale point-clouds [1-2][4-5][7][12]. In these researches, the essential topic is how to extract
cylindrical surfaces precisely and reliably. When a cylindrical surface can be extracted, the shape of a
pipe can be reconstructed by only estimating the length of the cylinder.

On the other hand, planar faces may have complicated boundaries, and surfaces are often be
occluded by other surfaces. While planar surfaces can be extracted using the RANSAC method or the
region-growing method, the estimation of their boundaries is not a trivial problem.

In this paper, we discuss methods for efficiently and reliably constructing polygonal faces from
large-scale point-clouds. We assume that point-clouds are captured at several positions, and each
point-cloud contains tens of millions points. In our experiments, a common PC with 16GB RAM can
process only a single point-cloud at a time. Therefore, we detect polygonal faces from each point-cloud,
store them in a concise format, and merge them into unified polygonal faces. In addition, boundaries
of polygonal faces may be partly missing because of occlusions. We discuss how to make up for
missing parts so that the resultant shapes are consistent with measured point-clouds.

2 OVERVIEW

We efficiently generate polygonal faces from large-scale point-clouds. In our method, we first convert
each point-cloud into a 2D development image for efficiently processing large-scale point-clouds. Then
we search for planar faces in the image. Since it is very time-consuming and unstable to extract all
planes from a large-scale point, we segment a point-cloud into continuous point-sets by examining the
proximity of neighbor points. When planar faces are detected, their boundaries are detected and
stored. When all faces are detected from point-clouds, they are merged into unified polygonal faces.
Finally we discuss how to recover missing portions when the original surfaces are estimated as
rectangle planes.

3 RECONSTRUCTION OF POLYGONAL FACES

3.1 Development Image of Point-Cloud

The kd-tree and octree are typically used for estimating the connectivity of points, but these methods
are time-consuming when they are applied to very large point-clouds. In stead, we represent the
connectivity using the adjacency on the 2D lattice.

In our method, we map a point-cloud onto a 2D lattice for maintaining adjacent relationships of
points. This mapping is possible because mid/long-range laser scanners output organized points
based on the mechanism of the measurement. Mid/long range laser scanners emit a laser beam to an
object and measure the round-trip travel time of the laser beam. Laser scanners sample points on
objects while rotating laser beams with an equal angle spacing. Fig.1 shows a mechanism of a laser
scanner. Laser beams are rotated vertically by spinning a miller and horizontally by rotating the body
of the laser scanner.

The directions of laser beams can be represented using the azimuth angle θ and the zenith angle

φ . Then (x, y, z) coordinates can be converted to spherical coordinates (r,θ,φ) , when the origin of the

coordinate system is placed at the source of laser beams. When the angle spacing is constant while
measurement, points are regularly ordered in the angle space and they can be developed onto a 2D
rectangle image defined by two rotation angles.

We map each point (x,y,z) in a point-cloud onto (θ,φ) in a development image, and quantize the

position using the sampling interval of a laser scanner. Fig. 2 shows a development view of a point-cloud
captured at a fixed position. In this figure, a reflected intensity of a laser beam is drawn at each pixel as a
brightness value. In this image, (x,y,z) is also described at each pixel.

 3

Neighbor points can be obtained by traversing adjacent pixels on a 2D image. In our experiments,
our neighbor search is about 10 times faster than the search by the kd-tree and the octree when a
point-cloud consists of tens of millions points. We evaluated the computation time of the kd-tree and the
octree using the Point Cloud Library (PCL) [13].

Fig. 1: Rotation angles of a laser scanner.

Fig. 2: Development image of a point-cloud.

3.2 Segmentation to Continuous Regions

In this paper, we detect planar regions using the RANSAC method. In the RANSAC method, three
points are randomly selected and a plane equation is calculated using the three points. Then we count
the number of points on the plane. This process is iterated many times and the plane equation with
the maximum number of points is recorded. When the maximum number exceeds a certain threshold,
the detected region is regarded as a planar face.

Although the RANSAC method is powerful, it is very time-consuming when it is applied to a large-
scale point-cloud. Schnabel, et al. [10] estimated the number of iterations T when the RANSAC
method can detect a plane with the probability p :

T ≥

log(1− p)

log{1−(n /N)3}
, (3.1)

where N is the number of points in a point-cloud; n is the number of points on a plane. In this paper,
we handle tens of millions points of a manufacturing plant. When we suppose N = 50,000,000 ,

 n = 10,000 , and p = 0.99 , the value of T becomes more than 57 billions only for detecting a single

plane. It is absolutely necessary to segment a point-cloud into many point-sets without dividing each
plane.

 4

For reliably segmenting a point-cloud, we detect continuous surfaces in a development image. We
estimate distances between neighbor points when the two points are on the same surface. As shown in
Fig. 3, the distance of two neighbor points on the same plane can be estimated as:

s = | p |2 Δ φ

| (p,n) |
, (3.2)

where p is a coordinate; n is the normal vector of the plane; Δφ is the interval of the azimuth and

zenith angles. Since Δφ is very small in a dense point-cloud, we can approximate a small region on a

continuous surface as a plane. The normal vector can be estimated using neighbor points on the
development image [1][6].

We evaluate whether two neighbor points are on a continuous surface. Suppose the actual distance
between two neighbor points is calculated as d . We regard that the two points are on a continuous
surface only when d < k ⋅s . The variable k is a constant value. We specified k = 1.2 in this paper.

We detect each continuous surface using the region-growing method. We select a point and grow
the region when the distance of adjacent points is less than k ⋅s . We repeat this process until each
point belongs to one of continuous regions. In our implementation, we discard continuous regions
with less than M points. The threshold M can be specified by the user.

Fig. 4 shows an example of segmentation. In this example, 2972 continuous regions were
generated. We specified threshold M as 300. In our experiments, the processing time was about 5 sec
for 40 million points.

Fig. 3: Estimation of distance between neighbor points.

Fig. 4: Segmentation into continuous surfaces.

3.3 Detection of Planes

Planes are detected in each continuous region using the RANSAC method. The performance of the
RANSAC method is determined by the value of (n /N) in Eqn. (3.1). When (n /N) is very small, the

number of iterations may become prohibitively large. In the example of Fig. 4, the largest region
consists of 7 million points, and six regions have more than a million points.

 5

Fortunately, very large continuous regions in a manufacturing plant include large planar floors or
walls. Since (n /N) is relatively large in these cases, the floor and wall planes can be detected during a

reasonable number of iterations. Fig. 5 (a) shows a planar floor in the largest continuous region. Since

 (n /N) is equal to 0.54 in this case, only 27 iterations are enough to detect the floor plane with a

probability of 99%.

In the RANSAC method, planes tend to be detected in the order of areas of planes from the largest
to the smallest. When the largest plane is detected and eliminated from a continuous region, the
remaining region becomes disconnected in most cases. In the case of Fig. 5(a), the elimination of the
floor plane causes three large continuous regions and many small ones. In each subdivided region,
planes can be detected in a fewer number of iterations, because N in Eqn. (3.1) becomes smaller.

For reducing the number of iterations, we apply segmentation based on Eqn. (3.2) each time a
plane is detected and removed from a continuous region. The continuous region is recursively
subdivided so that the search areas become gradually smaller. This algorithm allows us to detect even
small planes from a large-scale point-cloud. Fig. 5(b) shows all detected planes in the largest
continuous region. In this example, the largest plane consists of 3.8 million points, and the smallest
one consists of 307 points. Small planes are detected after the original continuous region is
subdivided into considerably small regions.

The size of detectable planes is determined by distances and sampling intervals, as shown in Fig. 3.
In our experiments, we could calculate a plane equation when a certain number of points were
sampled from a planar region. In this paper, we specified a threshold for the plane size as the number
of points on a plane. In this paper, we used 300 points as the threshold.

We note that cylindrical surfaces are also included in manufacturing plants. When the plane
detection is applied to a cylindrical surface, it generates many strip-like planes. For avoiding such false
planes, we apply the cylinder detection concurrently with the plane detection. When multiple adjacent
planes fit to a cylinder, the points are regarded as a part of the cylinder and removed from the list of
planes.

We apply plane detection to each continuous region while segmenting the region until no planes
can be detected. Fig. 6 shows planes and cylinders detected from a point-cloud. The computation time
was 268 second using Intel Core i7 CPU with 12 GB RAM.

Each detected plane consists of a lot of points. In the example of Fig. 6, the number of points on
all planes is 24 million points. Since very large memory space is required to store all planes in multiple
point-clouds, each plane should be represented concisely.

We represent planes using equations and their boundaries for reducing the data size. However,
boundaries of detected planes may be complicated because of sampling intervals, noises and
occlusions. Fig. 7(a) shows an example of the boundary of a planar region. We simplify the boundaries
of detected planes. We detect straight lines on the boundary of each plane and merge collinear
segments along polygon boundaries. Since the sampling interval can be estimated using Eqn. (3.2), we
use the sampling interval as a threshold of line fitting.

Fig. 7(b) shows a simplified boundary and the triangulated mesh model. In the case of Fig. 6, we
could reduce the number of points from 24 million to 0.21 million points for 5624 planes. Fig. 8 shows
simplified faces on a development image. Fig. 9 shows all planes extracted from a single point-cloud
with about 50 million points. Our method can efficiently process a large-scale point-cloud. The
computation time was 114 second using Intel Core i7 CPU with 12 GB RAM.

 6

 (a) Floor in the largest region (b) Detected planes

Fig. 5: Plane detection in the largest continuous region.

 (a) Planar regions (b) Cylindrical regions

Fig. 6: Regions of continuous surfaces on a development image.

								
 (a) Boundary of planar region (b) Triangulation using points on the simplified boundary

Fig. 7: Representation of a planar face.

																		 		
 (a) Detected planes (b) Triangulated faces using simplified boundaries

Fig. 8: Simlified plane faces.

 7

	

	

Fig. 9: Planar faces extracte from a point-cloud.

3.4 Merging Polygonal Faces from Multiple Scans�

When a manufacturing plant is surveyed, point-clouds are captured at multiple positions in order to
reduce occluded regions. Since our method uses development images based on scanner positions, we
have to process each point-cloud separately.

We suppose that a registration matrix is assigned to each point-cloud. Then planar faces can be
transformed onto the world coordinate system using registration matrices, as shown in Fig. 10. We
describe the world coordinate system as Sw , a local coordinate system defined at scanner position i as

Si , and a registration matrix from Si to Sw as Mi .

When faces from each point-cloud overlap in the world coordinate system, we merge them and
refine the boundary. We define a 2D lattice on a detected plane and merge overlapping planar faces on
the lattice. Since we can estimate sampling intervals using Eqn. (3.2), we define the spacing of the
lattice as the average of intervals.

We project boundary points of each plane onto the lattice. We generate a closed line of the
boundary and fill the inside of the closed region. When all overlapping faces are projected on the
lattice, the boundary of the filled region is traversed and it is stored as a merged polygonal face.

Even when planes are merged, some potions of planes are still missing. In Fig. 11, some planes
have complicated boundaries because of occlusions. In a manufacturing plant, many planar faces are
originally rectangles. For reconstructing rectangles, we search for straight-line segments from the

	

	

Fig. 10: Transformation between the world coordinate system and
the scanner-centered coordinate systems.

 8

boundary of each plane. When perpendicular and parallel lines are detected from the boundary of a
plane, the plane is regarded as a candidate of a rectangle.

When we generate a candidate rectangle, we evaluate the rectangle is consistent with point-clouds.
Fig. 12 shows the relationships between the depth on a development image and the distance to the
estimated plane. If a missing portion stems from an occlusion, the depth on a development image
must be larger than the distance to the plane. We project candidate rectangle onto each development
image and apply the consistency test. If a candidate rectangle passes tests on all development images,
it is regarded as a rectangle face. Fig. 13 shows rectangle faces generated from planes with
complicated boundaries.

																									 	
 (a) Detected planes (b) Boundaries

Fig. 11: Boundaries of polygonal faces.

	

Fig. 12: Consistency check on a developmemt image.

	
	

 (a) Original faces (b) Simplified rectangles

Fig. 13: Generation of simple polygons.

 9

4 EXPERIMENTAL RESULT

We applied our method to point-clouds in Fig. 14. We measured a facility using two different
resolutions. Point-clouds 1, 2, and 3 contain about 40 million points, and point-clouds 4, 5, and 6
contain about 10 million points. In this figure, blue pixels show that laser beams are not returned.

Tab. 1 shows the numbers of points, continuous regions generated by segmentation, and planar
faces. The computation time of segmentation and plane detection is also shown in this table.

In Tab. 2, we show the computation time for unifying and simplifying polygons from three point-
clouds. The total processing time includes loading three ASCII files, removing their noises, and
detecting unified planar faces.

Our experimental results show that our method can generate polygonal faces from large-scale
point-clouds in a practical time. Our method could process a dozen of point-clouds with 40 million
points in about an hour.

� � � �
 (a) Point-cloud #1 (b) Point-cloud #2 (c) Point-cloud #3

 (d) Point-cloud #4 (e) Point-cloud #5 (f) Point-cloud #6

Fig. 14: Examples of point-clouds.

Point-
Cloud

Number
of Points

Number
of Regions

Number
of Planes

Timing for
Segmentation

Timing for
Plane Detection

Average for
1000 Planes

1 40,660,717 2,629 5,818 4.7 sec 268 sec 46.1 sec
2 40,538,597 3,223 4,037 4.4 sec 167 sec 41.4 sec
3 40,705,360 2,611 2,923 4.5 sec 83 sec 28.4 sec
4 9,842,495 1,486 1,852 1.1 sec 36 sec 19.4 sec
5 10,016,136 898 1,072 1.1 sec 62 sec 57.8 sec
6 9,911,855 2,093 1,552 1.0 sec 80 sec 51.6 sec

Tab. 1: Calculation time for point-clouds.

Point-Cloud Total Number

of Polygons
Timing for Unifying

Plane faces
Total Processing

Time
#1, #2, #3 12,778 48.3 sec 13 min 28 sec

#4, #5, #6 4,476 11.6 sec 4 min 8 sec

Tab. 2: Calculation time for unifying polygons.

 10

5 CONCLUSION

In this paper, we proposed a method for extracting polygonal faces from large-scale dense point-clouds.
We first generated a development image using each point-cloud and segmented it into continuous
regions. Then we extracted planes using the RANSAC method. We merged polygonal faces extracted
from multiple point-clouds. We also showed a method for simplifying rectangle faces. The
experimental results showed that our method could generate polygonal faces in a practical time.

In future work, we would like to reconstruct complete solid objects in manufacturing plants by
combining polygonal faces. Since there are a lot of missing portions in point-clouds, it is necessary to
make up for missing shapes. In actual surveys, a single plane may be captured as multiple
disconnected ones because of occlusions. In such cases, we would like to reconstruct reasonable
planar shapes by considering various types of constraints. We observed that very thin cylinders were
sometimes detected as planes. Since it is actually hard to identify surface types from sparse noisy
points, we would like to investigate knowledge-based approaches for engineering plants. In our current
implementation, we can construct simple cuboids with perpendicular polygonal faces. Since there are a
variety of objects in manufacturing plants, we would like to develop methods that can be applied to
non-trivial shapes.

REFERENCES

[1] Kawashima, K.; Kanai, S.; Date, H.: As-Built Modeling of Piping System from Terrestrial Laser
Scanned Point Clouds Using Normal-Based Region-Growing, 2013 Asian Conference on Design
and Digital Engineering, 2013.

[2] Lee, J.; Kim, C.; Son, H; Kim, C.: Skeleton-Based 3D Reconstruction of As-Built Pipelines from
Laser-Scanned Data, ASCE International Conference on Computing in Civil Engineering, 2012, 245.

[3] Lin, H.; Gao, J.; Zhou, Y.; Lu, G.; Ye, M., Zhang, C.; Yang, R: Semantic decomposition and
reconstruction of residential scenes from lidar data. ACM Transactions on Graphics, 32(4), 2013.
http://dx.doi.org/10.1145/2461912.2461969

[4] Masuda, H.; Tanaka, I.: Extraction of Surface Primitives from Noisy Large-Scale Point-Clouds
Computer-Aided Design and Applications, 6(3), 2009, 387-398.

[5] Masuda, H.; Tanaka, I.; Enomoto, M.: Reliable Surface Extraction from Point-Clouds using Scanner-
Dependent Parameters, Computer-Aided Design and Applications, 10(2), 2012, 265-277.
http://dx.doi.org/10.3722/cadaps.2013.265-277

[6] Mitra, N., J.; Nguyen, A.: Estimating Surface Normals in Noisy Point Cloud Data, Symposium on
Computational Geometry'03, 2003, 322-328.

[7] Mizoguchi, T.; Kuma, T.; Kobayashi, Y.; Shirai, K.: Manhattan-World Assumption for As-Built
Modeling Industrial Plant. Key Engineering Materials, 523, 2012, 350-355.
http://dx.doi.org/10.4028/www.scientific.net/KEM.523-524.350

[8] Nan, L.; Sharf, A.; Zhang, H.; Cohen-Or, D.; Chen, B.: SmartBoxes for Interactive Urban
Reconstruction. ACM Transactions on Graphics (TOG), 29(4), 2010, 93.
http://dx.doi.org/10.1145/1778765.1778830

[9] Nan, L.; Xie, K.; & Sharf, A: A search-classify approach for cluttered indoor scene understanding.
ACM Transactions on Graphics (TOG), 31(6), 2012, 137.
http://dx.doi.org/10.1145/2366145.2366156

[10] Schnabel, R.; Wahl, R.; Klein, R.: Efficient RANSAC for Point-Cloud Shape Detection, Computer
Graphics Forum, 26(2), 2007, 214-226. http://dx.doi.org/10.1111/j.1467-8659.2007.01016.x

[11] Sharf, Q.; Sharf, A.; Wan, G.; Li, Y.; Mitra, N., Cohen-Or, D., Chen, B.: Non-local Scan Consolidation
for 3D Urban Scenes, ACM Trans. Graph. 29(4), 2010, Article 94.

[12] Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A: Automatic Reconstruction of As-Built Building
Information Models from Laser-Scanned Point Clouds: A Review of Related Techniques,
Automation In Construction, 19(7), 2010, 829-843. http://dx.doi.org/10.1016/j.autcon.2010.06.007

[13] The Point Cloud Library, http://pointclouds.org.

