

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

1

Interactive Collision Detection for Engineering Plants
based on Large-Scale Point-Clouds

Takeru Niwa1 and Hiroshi Masuda2

1The University of Electro-Communications, takeru.niwa@uec.ac.jp
2The University of Electro-Communications, h.masuda@uec.ac.jp

ABSTRACT

In this paper, we discuss interactive collision detection for large-scale point-clouds.
The state-of-the-art laser scanners enable us to capture dense point-clouds from
engineering plants. Dense point-clouds are useful for simulating renovation tasks of
engineering plants. However, dense point-clouds of an engineering plant are very large,
and it is difficult to interactively calculate collisions while the user drags objects in
point-clouds. We propose an efficient collision detection method for large-scale point-
clouds, and discuss an interactive system for collision detection. In our method,
collisions are evaluated on two-resolution depth-maps, which generated from point-
clouds. Our method allows us to precisely and efficiently detect collisions in large-
scale point-clouds. The experimental results show that our system can interactively
detect collisions in large-scale point-clouds.

Keywords: Point-Clouds, Collision Detection, Depth Map, Engineering Plants

1 INTRODUCTION

The state-of-the-art laser scanners make it possible to capture dense point-clouds of engineering
plants. Typical phase-based scanners can capture one million points in a second in the range of 100
meter. Dense point-clouds are faithful 3D representation of engineering plants, and they can be used
for simulating whether equipment can be safely moved without collisions when engineering plants are
upgraded or renovated.

However, it is not easy to realize real-time collision detection for large-scale point-clouds. Since
point-clouds of an engineering plant often consist of hundreds of millions of points, collision
detection methods must handle very large point-clouds efficiently. In addition, point-clouds of
engineering plants include a lot of missing potions, because occlusion cannot be avoided when many
manufacturing machines are installed. Occluded regions may not be free space. Even if 3D models do
not collide with point-clouds in occluded regions, they may collide in actual engineering plants.

So far several researchers have studied collision detection for point-clouds [1-4],[6-8]. Most
methods subdivide 3D space using the octree or the kd-tree for detecting collisions [2-4],[6],[8].
However, they did not intend to process large-scale point-clouds interactively. The octree and the kd-
tree are not very efficient when the number of points is tens or hundreds of millions. Other
researchers proposed screen space methods for collision detection [1],[7], because 2D depth tests are
more efficient than 3D depth tests in many cases. However, they applied their methods only to
relatively small point-clouds. In our experiments, it was difficult to promptly evaluate collisions on a
high-resolution depth map with 50 megapixels when the user interactively moves objects in large-scale
point-clouds. In addition, conventional methods may output false-negative collision results when
points are missing in occluded regions, although false-negative collisions are dangerous in actual tasks.

In this paper, we propose a real-time point-based collision detection method, which can handle
large-scale dense point-clouds and can avoid false-negative evaluations in occluded regions. Our
method can be categorized into screen-space methods, but our depth map is defined in angle-space.

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

2

For enormously accelerating performance of collision detection, we introduce two-resolution angle-
space depth maps. We also discuss techniques for developing an interactive collision detection system.

2 OVERVIEW

In this paper, we consider collision detection between 3D models and point-clouds. We suppose that
the positions of laser scanners are known. When a point-cloud is captured using a typical laser scanner,
coordinates are described on the scanner-centered coordinate system, in which the origin (0, 0, 0) is the
scanner position. When multiple point-clouds are captured at different positions and they are merged
onto the world coordinate system, coordinates of point-clouds are transformed using transformation
matrices. We suppose that transformation matrices for registration are maintained and coordinates
can be mutually converted onto the scanner-centered system and the world coordinate system.

Our method classifies collision statuses into “collision”, “no-collision”, and “occluded”. Fig. 1 shows
three statuses for collisions between a 3D model and a point-cloud. When points in a point-cloud are
included in closed space of a 3D model, the status is “collision”. When a 3D model is placed in front of
a point-cloud, it does not collide with the point-cloud, and therefore the status is “no-collision”.
Otherwise, the status is “occluded”, because a 3D model is placed in an occluded region, in which no
points are captured because of occlusion.

Fig. 1: Three statuses of collision detection

In our method, collisions are evaluated on a 2D angle-space depth map for efficiently processing
large-scale point-clouds. Each scanner-centered coordinate (", $, %) is converted into a spherical
coordinate ', (,) . Two angles ', (are quantized and an angle-space depth-map is created by
projecting all points on the '-(plane. Each pixel value of the depth map is) = "+ + $+ + %+.

Collision statuses are evaluated on the angle-space depth map. Fig.2 shows depth checks on an
angle-space depth map. Each face of 3D models is projected on the depth map, and depth values are
compared at each pixel to determine collision statuses.

Our method evaluates collisions using two-resolution depth maps. While the high-resolution depth
map is useful for precise collision detection, the low-resolution one can be quickly processed. Our two-
resolution depth maps allow us to detect collisions precisely and quickly. The low-resolution depth
maps are used for checking collisions in obvious cases and restricting regions to be processed in the
high-resolution depth map.

Fig. 3 shows a process of collision detection between point-clouds and 3D models. When multiple
point-clouds are captured from an engineering plant, each point-cloud is separately processed using
the scanner-centered coordinates. For efficiency reason, 3D models are decomposed into a set of
convex shapes, and collisions of each convex shape are evaluated. Collisions are detected using depth
tests. Each face of a convex model is projected onto an angle-space depth map, and the depth values
are compared at each pixel.

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

3

Fig. 2: Collision check on angle-space depth map

Fig. 3: Process of collision detection

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

4

The high-resolution depth map is necessary only when the status on the low-resolution depth
maps is collision. When the status is no-collision or occluded on the low-resolution depth map, the
collision status can be determined only on the low-resolution depth maps, as described in the next
section. When the collision status is occluded, collisions are evaluated using other point-clouds,
because points are missing at the 3D model position.

Fig. 4 shows our interactive collision detection system. In the main viewer, point-clouds and 3D
models are displayed. 3D models can be dragged by the user in this window. Since the system
automatically extracts floor planes from point-clouds, 3D models move on floors. The whole view of
point-clouds is displayed in the bird’s-eye view. The panorama image of a point-cloud is also displayed
in the window. A panorama image is an angle-space color image, which is explained in Section 3.1.
Since our method can very efficiently process large-scale point-clouds, collisions can be promptly
evaluated while the user interactively drags a 3D model on a screen.

Fig. 4: Collision detection system

3 COLLISION DETECTION FOR LARGE-SCALE POINT-CLOUDS

3.1 Generation of Angle-Space Depth Map

Directions of laser beams are controlled by the azimuth angle ' and the zenith angle (, as shown in
Fig. 5. Since points are sampled in equal angle intervals by the laser scanner, points are ordered
coherently on the angle space ', (.

An angle-space depth map can be generated by converting ", $, % coordinates to spherical
coordinates ', (,) . Angles (', () are quantized into an integer coordinate (-, .), and the distance) is
described at pixel (-, .). We suppose that the width and height of a depth map are known, because
points captured by most commercial laser scanners can be output in the PTX format. The first two
values in this format indicate the numbers of points along the azimuth and the zenith angles. We use
these numbers as the width and height of a depth map.

Fig. 5: Angle-space depth map

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

5

3.2 Collision Detection by Depth Test

Collisions are evaluated by projecting faces of a mesh model onto depth maps. We suppose that 3D
mesh models are closed and convex. When a 3D model is not convex, they are subdivided into a set of
convex shapes. Then collision of each convex model is separately evaluated.

When a 3D model is convex and closed, the line of a laser beam intersects with two points on the
3D model except in tangent cases, as shown in Fig. 6. We describe the smallest distance as /0, the
largest as /1, and the depth value of a depth map as) at the pixel. When two points on a 3D model are
projected onto pixel (-, .), space between depths /0 and /1 is occupied by the 3D model.

Collision is evaluated at each pixel on a depth map. The collision status is determined based on
the relationships among depths /0, /1, and), as shown in Fig. 7. When depths satisfy /0 ≤) ≤ /1 at
more than one pixel, the 3D model collides with the point-cloud. When all depths of the model are
smaller than the ones of the depth map, the 3D model does not collide with the point-cloud. Otherwise,
the status is occluded, which means the model is partly occluded from the scanner position.

This depth test is efficient for relatively small point-clouds, but it is time-consuming to handle
large-scale point-clouds, because depths have to be evaluated on a huge number of pixels. One
solution for improving performance is to reduce the resolution of depth maps, but rough depth maps
lose details of shapes and the accuracy of collision detection. For example, if the number of points is
reduced to one million, obstacles that are less than 9 cm may be overlooked at the distance of 20 m.

Fig. 6: Depth image defined by two rotating angles.

Fig. 7: Collision status determined by the relationships among three depths

3.3 Collision Detection by Two-Layer Depth Maps

To accelerate collision detection for large-scale point-clouds, we introduce a new collision detection
technique based on two-layer depth maps. In this method, we prepare low-resolution depth maps and a
high-resolution depth map. Low-resolution depth maps are used for obvious collision checks, and a
high-resolution one is used only when a 3D model collides with low-resolution depth maps.

Low-resolution depth maps are generated using a high-resolution depth map. In Fig. 8, we consider
low-resolution depth maps with an 3×3	times smaller number of pixels. A high-resolution depth map
is divided into blocks with 3×3 pixels, and the nearest and the farthest depths are selected in each
block. One low-resolution map maintains the nearest depths, and the other map maintains the farthest
depths.

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

6

Fig. 8: Generation of low-resolution depth maps

First, collision is evaluated on low-resolution depth maps. The two depths of a 3D model at pixel

(-, .) are described as /0 and /1, and the depths on the low-resolution depth map are described as)0 and
)1, where /0 ≤ /1 and)0 ≤)1.

Fig. 9 illustrates relationships among depths /0, /1,)0, and)1. When the depth /1 of a 3D model is
smaller than the depth)0, the model does not collide with a point-cloud (Fig. 9(a)). Since the depth)0 is
the nearest depth in a block on the high-resolution depth map, all points in the block do not collide
with the 3D model. Therefore, if /1 ≤)0 is satisfied at all pixels on the low-resolution maps, the 3D
model does not collide with the high-resolution depth map either.

When the depth /0 of a 3D model is larger than the depth)1, the model is placed at the back of
point-clouds (Fig. 9(b)). In this case, the model is partly occluded from the scanner position, and
therefore the status is occluded. If /0 ≥)1 is satisfied at all pixels on the low-resolution maps, the status
is occluded on the high-resolution depth map also.

When the range [/0, /1] overlaps with the range [)0,)1], the status cannot be precisely determined on
low-resolution depth map (Fig. 9(b)). The status can be any of collision, no-collision, or occluded on the
high-resolution depth map. Then the system stores faces that collide with the low-resolution depth
maps, and projects them on the high-resolution depth map.

In the cases in Fig. 9(a)(b), collision statuses can be precisely evaluated only using the low-
resolution depth maps. Since the number of pixels in low-resolution maps is much smaller than the
ones in the high-resolution map, the performance can be greatly improved in these cases. Even when a
high-resolution depth map is required for precise collision detection, collisions are evaluated only for
faces that collide with low-resolution depth maps. Since the number of evaluated pixels is greatly
reduced in all cases, collision detection based on two-layer depth maps is extremely efficient compared
to the method that uses only high-resolution depth maps.

Fig. 9: Collision detection on a rough depth map

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

7

3.4 Rough Check by Bounding Box

To further accelerate collision detection, bounding boxes of 3D models can be used for rough check.
When a bounding box is evaluated as no-collision or occluded on the low-resolution depth map,
collision detection is completed only using the bounding box.

We suppose that 3D models are placed on a flat floor. For calculating a bounding box, the bottom
face of a 3D model is transformed on the x-y plane, and the two directions of the bounding box are
calculated as two eigenvectors of the principal component analysis for (", $) coordinates of vertices in
a 3D model. In our method, a concave 3D model is decomposed into a set of convex shapes. We also
create bounding boxes for decomposed convex models and apply rough checks using them. Bounding
boxes of decomposed models are created so that their bottom faces are parallel to the x-y plane for
avoiding collisions between bounding boxes and floors.

4 INTERACTIVE COLLISION DETECTION SYSTEM

4.1 System Overview

We implemented a collision detection system, in which our collision detection method is involved. Fig.
10 shows our implemented system. In this system, when the user selects a position on a screen using a
mouse, a 3D model moves on a floor, and then the collision status is promptly indicated as the color of
the 3D model and a text. Floors are extracted in pre-process phases and their equations are stored in
the system.

When multiple point-clouds are captured from an engineering plant, they are separately processed
for collision detection. At the first step, the user selects a point-cloud using panoramic images of
point-clouds, and places a 3D model by specifying a position on a floor. Once depth maps of a point-
cloud is selected, they are continuously used for collision detection until the collision status becomes
occluded. When the status is occluded, the system replaces the current depth maps to the ones of the
next nearest point-cloud. In our system, depth maps are automatically replaced while the user drags a
3D model on a screen.

In our method, a 3D model is represented as a set of convex shapes. Therefore we implemented a
cutting operation, which subdivides a 3D model in our system. When the user draws a cutting-plane
line on a 3D model, the system subdivides the 3D model along the line. Holes are automatically filled
with triangles using the Delaunay triangulation. Then the system maintains the relationships between
decomposed convex models and the original 3D model.

 Fig. 11 shows conditional branching of collision detection in our system.
In the step (1), a point-cloud is specified by the user, and two low-resolution depth maps and a

high-resolution depth map are determined. Then a 3D perspective view, a top view, and a panoramic
image are displayed on the window, as shown in Fig. 10. A 3D model is also selected by the user.

Fig. 10: Collision detection system

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

8

Fig. 11: Our collision detection method using multiple point-clouds

In the step (2)-(4), collision detection is processed on low-resolution depth maps. First, collision is
roughly checked using a bounding box of a 3D model. If the status is no-collision, collision detection is
completed. If the status is occluded, depth maps are replaced with the next ones because collisions
cannot be evaluated on the current depth maps. Otherwise, the system goes to the next step. In step (3),
each convex model is tested using its bounding box. Only when the status is neither no-collision nor
occluded, the system goes to the step (4). In the next step, collision of each convex model is evaluated
by projecting faces on the low-resolution depth maps. Only when the status of a convex model is
neither no-collision nor occluded, collision is further evaluated using the high-resolution map.

In the step (5), collisions are evaluated only using faces that collide with the low-resolution depth
maps. The status is collision only when statuses of one or more convex shapes are collision. The status
is no-collision only when statuses of all convex shapes are no-collision. Otherwise, one or more convex
models are occluded from the current scanner position. Then the current depth maps are replaced, and
occluded convex models are further tested on the next depth maps by following the step (2)-(5).

4.2 Interactive Collision Detection

In a pre-process phase of collision detection, floors are extracted from point-clouds. In our
previous work [5], we proposed an efficient surface detection method for large-scale point-clouds. Our
plane detection is based on this method, which extracts planes using the RANSAC method.

Large horizontal planes are floors or ceiling in most engineering plants. When laser scanners are
placed on floors, the z values of points on floors are negative on the scanner-centered coordinate
system. Therefore, when a large horizontal plane is detected from a point-cloud, and it has negative z
values, the plane is regarded as a floor. When a floor plane is detected, other planes on the plane are
regarded as floors. Fig. 12(a) shows detected floor planes.

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

9

3D models are moved on floor planes. Fig. 12(b) shows positioning of a 3D model. When the user
specifies a position on a screen by clicking with the mouse, a straight line of sight can be calculated.
Then a 3D model is placed at the intersection point between the straight line and the floor plane. While
the user interactively drags the cursor, the model moves following intersection points. The user can
also rotate 3D models by dragging the cursor. A 3D model rotates around the rotation axis that is
perpendicular to the floor plane, as shown in Fig. 12(b).

 (a) Floor planes detected from a point-cloud (b) Displacement of 3D Model
Fig. 12: Interactive movement of 3D model

5 EXPERIMENTAL RESULTS

We evaluated our method using point-clouds of an engineering plant, which were measured with the
angle resolution of 360/10000 degree. The number of points in a single point-cloud was about 40
million. We placed a mesh model with 5000 triangles in the point-clouds. The resolution of low-
resolution depth maps was 720×360 pixels (0.26 megapixels), and the one of high-resolution depth
maps was 11520×5720 pixels (66 megapixels). CPU time was measured using a laptop PC with 2.8GHz
Intel Core i7 and 16.0GB RAM.

For performance evaluation, we placed a 3D model at 15,000 positions on a floor, and applied
collision detection at the positions. Tab. 1 shows frame rates of collision detection. In this evaluation,
collisions were evaluated using a single point-cloud. When the status was no-collision or occluded on
the low-resolution depth maps, collision detection was completed. Only when the status was collision
on the low-resolution depth map, the high-resolution depth map was used for collision detection. Since
the number of faces for depth check was reduced on the high-resolution depth map, the performance
was efficient even on the high-resolution depth map.

The experimental results showed that our method was very efficient even when point-clouds were
large-scale. We can conclude that collision detection on large-scale point-clouds can be calculated in
real-time while the user drags a 3D model in large-scale point-clouds.

Status Low-Resolution
Depth Map

High-Resolution
Depth Map

Collision 59.76 fps 52.39 fps

No Collision 64.17 fps 53.85 fps

Occluded 61.54 fps 56.17 fps

Tab. 1: Calculation time (fps: frame per seconds)

Computer-Aided Design & Applications, Vol.13, No.4, pp.511-518, 2016

10

6 CONCLUSION

In this paper, we proposed a point-based collision detection method, which could process large-scale
point-clouds in a real time. We also proposed a method for efficiently identifying whether a 3D model
was placed in an occluded region. In our method, collisions were evaluated by projecting 3D models
on depth maps. We showed that collisions could be precisely and quickly evaluated on two-layer
depth maps. In addition, we explained our implementation of an interactive collision detection system.
The experimental results showed that our method could very quickly process collision detection even
for large-scale point-clouds following the user’s dragging of a 3D model.

In future work, we would like to investigate memory management for very large point clouds. We
would also like to develop automatic route search methods based on our collision detection technique.

REFERENCES

[1] dos Anjos, R. K; Pereira, J. M.; Oliveira, J. F.: Collision detection on point clouds using a 2.5+D
image-based approach, Journal of WSCG, 20(2), 2012, 145-154.

[2] Figueiredo, M.; Oliveira, J.; Araújo, B.; & Pereira, J.: An efficient collision detection algorithm for
point cloud models, In 20th International conference on Computer Graphics and Vision, 43, 2010,
44.

[3] Hermann, A.; Drews, F.; Bauer, J.; Klemn, S.; Roennau, A.; Dillmann, R.: Unified GPU voxel collision
detection for mobile manipulation planning, Intelligent Robots and Systems (IROS 2014),
IEEE/RSJ International Conference on. IEEE, 2014, 4154-4160,
http://dx.doi.org/10.1109/iros.2014.6943148

[4] Klein, J.; Zachmann, G.: Point cloud collision detection, In Computer Graphics Forum, Blackwell
Publishing, Inc., 23, 3, 2004, 567-576, http://dx.doi.org/10.1111/j.1467-8659.2004.00788.x

[5] Masuda, H.; Niwa, T.; Tanaka, I.; Matsuoka, R.: Reconstruction of polygonal faces from large-scale
point-clouds of engineering plants, The 11th annual International CAD Conference (CAD'14),
2014, http://dx.doi.org/10.14733/cadconfp.2014.150-152

[6] Pan, J.; Sucan, I. A.; Chitta, S.; Manocha, D: Real-time collision detection and distance computation
on point cloud sensor data, In Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, 2013, 3593-3599, http://dx.doi.org/10.1109/icra.2013.6631081

[7] Radwan, M.; Ohrhallinger, S; Wimmer, M.: Efficient collision detection while rendering dynamic
point clouds, Proceedings of the 2014 Graphics Interface Conference, Canadian Information
Processing Society, 2014, 25-33.

[8] Schauer, J.; Nüchter, A.: Efficient point cloud collision detection and analysis in a tunnel
environment using kinematic laser scanning and KD Tree search, ISPRS-International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 2014, 289-295,
http://dx.doi.org/10.5194/isprsarchives-xl-3-289-2014

