
Preserving Form Features in Interactive Mesh
Deformation

Hiroshi Masudaa,∗, Yasuhiro Yoshiokaa, Yoshiyuki Furukawab

aThe University of Tokyo, Graduate School of Engineering, Hongo, Bunkyo-ku, Tokyo
113-8656, Japan

bNational Institute of Advanced Industrial Science and Technology, Digital Manufacturing
Research Center, Namiki, Tsukuba-shi, Ibaraki 305-8561, Japan

Abstract

Interactive mesh deformation that preserves differential properties is a promising technique
for the design of mechanical parts such as automobile sheet-metal panels. However, exist-
ing methods lack the ability to manipulate the form features and hard constraints that are
commonly used in engineering applications. In this paper, we propose a new deformation
framework that precisely preserves the shapes of form features during deformation. Geo-
metric shapes are interactively deformed so that mean curvature normals are approximately
preserved in a least-squares sense and positional constraints and form-feature constraints
are precisely satisfied. In our system, the combination of soft and hard constraints is solved
using the Lagrange multiplier method. We also show how to constrain the motion of a
form feature on a plane or a straight line using linear constraints. The implemented system
achieves a real-time response for constrained deformation.

Key words: interactive mesh deformation, form-feature, linear constraints, Laplacian
coordinates, mean curvature normal

1 Introduction

In product design, 3D models are often created in the early stage of product devel-
opment and used for design evaluation by the development team. The evaluation
of design concepts in the early stage helps products to meet manufacturing, cost,

∗ Corresponding author.
Email addresses:masuda@nakl.t.u-tokyo.ac.jp (Hiroshi Masuda),

yoshioka@nakl.t.u-tokyo.ac.jp (Yasuhiro Yoshioka),y-furukawa@aist.go.jp
(Yoshiyuki Furukawa).

Preprint submitted to Elsevier Science 12 December 2006

safety, quality and maintenance requirements. Since design concepts are very of-
ten changed or discarded in the early stage, it is not reasonable to spend a great
deal of time on creating detailed 3D models. Interactive and intuitive 3D modeling
tools are preferable in the early design stage. Parametric surfaces, such as Bézier,
B-splines and NURBS, have been widely used to represent free-form shapes in
CAD applications, but it is very tedious and time-consuming to manipulate surface
patches with a large number of control points.

Our motivation for studying interactive deformation stems from requirements for
the deformation of automobile sheet-metal panels. Many interactive shape defor-
mation techniques have been developed so far, but they do not necessarily meet
engineering requirements. In sheet metal panels, regions such as circle holes and
character lines are often required to retain their original shapes for manufacturing,
assembly or aesthetic reasons. We call such partial regionsform features. Sheet
metal panels typically consist of a combination of smooth base surfaces and form
features, each of which has different characteristics; while smooth base surfaces
are characterized by a curvature distribution, form features are defined by surface
types and their parameters [1,2]. Therefore, in engineering design it is necessary to
control the curvature of base surfaces and the shapes of form features during shape
deformation.

Volume-based deformation is a popular interactive technique used in computer
graphics applications [3–5]. Such techniques change geometric shapes by deform-
ing the space in which they lie. However, it is not easy for the user to generate
intended geometric shapes by manipulating the control lattices of volumes.

In the last few years, several surface-based deformation techniques have been pro-
posed [6–8]. These methods calculate differential properties on a surface and en-
code the geometric shape using partial differential equations. In a typical deforma-
tion method, the user first selects the fixed region, which remains unchanged, and
the handle region, which is used as the manipulation handle, and drags the handle
region on the screen. Then all vertex positions in the mesh model are calculated
according to the position and orientation of the handle region. During deformation,
the system interactively solves partial differential equations by treating the fixed
and handle regions as boundary conditions.

Surface-based deformation techniques are useful for deforming free-form surfaces,
but existing methods cannot preserve the shapes of form features. For example, cir-
cular screw holes may be deformed to ellipses. In addition, existing methods solve
all constraints using the least-squares method and therefore produce compromise
solutions. However, many engineering applications require precise satisfaction of
dimensional and shape constraints. It is possible to set large weights for certain con-
straints in a least-squares system [9], but very large weights may cause numerical
problems. It is difficult to predict adequate weight values that satisfy the allowable
margin of error.

2

Instead, we introduce soft and hard constraints in shape deformation. When con-
straints are approximately satisfied in a least-squares sense, we call themsoft con-
straints, and when constraints are precisely satisfied, we call themhard constraints.
In typical shape design, while differential properties are not explicitly specified by
the user, form features and positional constraints are user-specified. It is obviously
reasonable to treat differential properties as soft constraints and user-defined con-
straints as hard constraints.

In this paper, we propose a novel mesh-editing framework that can manage form
features precisely. Our main contributions in this paper are:

• A novel deformation framework in which hard and soft constraints are incorpo-
rated and rotations are propagated using quaternion logarithms;

• The introduction of new constraints for translating and rotating form features
while preserving their original shapes; and

• The introduction of new constraints for maintaining the motion of form features
on a straight line or a plane.

In the following section, we review the related work on mesh deformation. In Sec-
tion 3, we describe our mesh deformation framework, in which hard constraints are
incorporated using Lagrange multipliers. Then a new rotation method is introduced
based on quaternion logarithms. In Section 4, we introduce a method for preserv-
ing form features by constraining the relative positions and rotations of vertices,
and then propose new feature constraints that maintain the motion of a form feature
on a line or a plane. We also present a simple feature extraction method. In Sec-
tion 5, we evaluate our framework and show experimental results. We conclude the
paper in Section 6.

2 Related Work

Interactive mesh deformation techniques have been intensively studied. Such re-
search aims to develop modeling tools that intuitively modify free-form surfaces
while preserving the details of shapes. There are several types of approach, which
are based on space deformation (FFD), multiresolution, and partial differential
equations (PDE).

FFD is very popular in computer graphics. Such methods modify shapes by de-
forming the 3D space in which objects lie [3–5]. Cavendish [2] discussed FFD
approaches in the context of design support and reported that FFD could be used
for designing automotive sheet-metal panels. Our aim is also to support the de-
sign of automotive sheet-metal panels, but in our empirical investigation of the
automobile industry, problems arise when shapes are deformed using FFD because
form-features in a 3D model are deformed in unintended ways. It is difficult for

3

FFD approaches to manage constraints on form features because the manipulation
handles do not work directly on geometric shapes.

Multiresolution approaches [10–14] decompose a surface into a base mesh and
several levels of detail, each of which is represented as the difference between suc-
cessive resolution levels. A shape is globally deformed at low resolution and locally
deformed at high resolution. Botsch and Kobbelt [7] applied this technique to inter-
active mesh editing. A mesh model is decomposed into two-level resolutions and
the smooth base is interactively deformed using energy minimization techniques.
Geometric details are then recovered on the modified smooth shape. However, it is
difficult to control the shapes of form features precisely in a multiresolution frame-
work.

PDE-based approaches directly deform the original mesh based on geometric con-
straints. These methods are categorized as non-linear and linear methods.

Non-linear methods typically solve Laplacian or Poisson equations using non-linear
iterative solvers [15–19]. Catalano et al. [20] investigated support tools for aesthetic
design and found that non-linear PDE approaches are popular in computer-aided
design. These methods produce fair surfaces, but they are time-consuming and dif-
ficult to use in an interactive environment.

Linear PDE-based approaches represent differential properties and positional con-
straints as a linear system. Discrete Laplacian operators are often used to repre-
sent differential properties [6,7]. Yu et al. [8] introduced a similar technique called
Poisson editing, which manipulates the gradients of the coordinate functions of the
mesh. Zhou et al. [21] proposed volumetric Laplacian operators for large deforma-
tions. We believe that linear PDE-based approaches are useful for product design
when product shapes undergo frequent design modifications.

A discrete Laplacian operator on a mesh is defined as the difference vector between
a vertex position and the weighted average positions of its one-ring neighbors.
Since Laplacians are defined in the local coordinate systems [6,22], one or more
vertices must be specified in the global coordinate system to determine all vertex
positions. Since the number of differential equations and positional constraints is
larger than the number of vertices, the least-squares method is typically used to
calculate compromise solutions. When Laplacians and positional constraints are
described as a linear systemMx = b, the least-squares system is represented as
MtMx = Mtb, and therefore vertex positions are calculated by solving this lin-
ear system. SinceMtM is a sparse symmetrical positive definite matrix, it can be
efficiently factorized [23]. After the matrix is factorized once,x is interactively
calculated according to the modification ofb.

The least-squares method is effective, but is not useful when some design parame-
ters must be precisely satisfied. Welch and Witkin [24] introduced a combination of
soft and hard constraints in variational surface modeling and solved them using La-

4

grange multipliers, but they did not apply these to interactive mesh editing. Yosh-
ioka et al. [25] solved hard constraints using equality-constrained least squares.
This method is very effective when constraints are restricted to simple positional
constraints. However, it is not effective for form-feature constraints, because a large
number of hard constraints with two or more variables make equality-constrained
least-squares systems less sparse. In this paper, we introduce hard constraints and
new form-feature constraints for interactive mesh editing and solve them using the
Lagrange multiplier.

Several authors have discussed methods for rotating Laplacian vectors following
the deformation of surfaces. Since the rotation is applied tob on the right-hand side
of the least-squares system, Laplacian vectors can be rotated interactively. Lipman
et al. [26] estimated the local rotations on the underlying smooth surface. Sorkine
et al. [6] linearized elements in a rotation matrix assuming that the rotation angles
are very small. Lipman et al. [27] defined a local frame for each vertex and en-
coded rotations using the relative orientations of these local frames. Zayer et al.
[28] rotated Laplacian vectors using harmonic functions in[0,1] based on discrete
Laplace–Beltrami operators. They defined a unit quaternion at each vertex and in-
terpolated four components of unit quaternions by assigning a single weight1.0
to all handle vertices. Our approach is similar to the Zayer method, although we
assign the logarithms of unit quaternions to vertices.

3 Framework for Constrained Deformation

3.1 Constraints on positions

Let meshM be a pair(K,P), whereP = {p1, . . . ,pn} and pi = (xi ,yi ,zi) ∈ R3;
K is a simplicial complex that contains verticesi, edges(i, j), and faces(i, j,k).
The adjacent vertices of vertexi are denoted byN(i) = { j|(i, j) ∈ K}. The original
position ofpi is referred to asp0

i = (x0
i ,y

0
i ,z

0
i).

When the normal vector and mean curvature of vertexi are referred to asκi andni ,
the mean curvature normalκini can be approximated using the following discrete
form [29]:

κini = L(pi) =
1

4Ai
∑

j∈N(i)
(cotαi j +cotβi j)(pi −p j), (1)

whereαi j andβi j are the two angles opposite to the edge in the two triangles that
share edge(i, j), as shown in Figure 1. We denote the mean curvature normal of
vertexi in the original mesh asδi .

5

Fig. 1. Definition ofαi j andβi j .

In this paper, we describe user-defined constraints other than mean curvature nor-
mals asf j(P j) = u j (P j ⊂ P). Then constraints for vertices can be described using
the following linear equations:

{
L(pi) = R(ni ,θi)δi (i = 1,2, . . . ,n)
f j(P j) = R(m j ,φ j)u j (j = 1,2, . . . ,m),

(2)

wheren is the number of vertices,m is the number of user-defined constraints, and
R(n,θ) represents a rotation matrix that rotates a vector around axisn ∈ R3 by
angleθ ∈ R. R(ni ,θi) andR(m j ,φ j) are calculated before Equation (2) is solved.
We describe a method for calculating rotation matrices in the next section.

Since the number of constraints in Equation (2) is greater than the number of vari-
ables, no exact solution exists. Therefore, we classify constraints in Equation (2)
into soft and hard constraints.

When we represent soft constraints asAx = b and hard constraints asCx = d in ma-
trix form, variablesx that minimize||Ax−b||2 subject toCx = d can be calculated
using the Lagrange multiplier as:

min
x

(
1
2
||Ax−b||2 +yt(Cx−d)), (3)

wherey = (y1,y2, . . . ,y3m)t are Lagrange multipliers. This minimization can be
calculated using the following linear system:

Mx̃ = b̃ (4)

6

M =

AtA Ct

C 0

 , x̃ =

x

y

 , b̃ =

Atb

d

.

This linear system determines the unique solution that precisely satisfies the hard
constraints. MatrixM can be factorized using sparse direct solvers for linear sym-
metric systems [30].

We note that when conflicting or redundant constraints are involved in the linear
system of hard constraints, they lead to rank deficiency of the linear system and the
solver may halt the computation. Such over-constraint problems can be resolved
by applying Householder factorization to each column in matrixC, as shown by
Yoshioka et al. [25]. If thejth column inCt is a redundant constraint, the diagonal
and lower elements of thejth column are equal to zero after the previousj − 1
columns are processed. Therefore, we can detect the redundant constraints. This
process can be calculated very efficiently (see Ref. [25] for more details).

3.2 Constraints on rotations

In this section, we describe our new rotation-propagation method for calculating
R(ni ,θi) in Equation (2).

In our framework, we assign the logarithms of unit quaternions to all vertices. A
quaternion can be written in the form:

Q = (w,x,y,z) = w+xi +yj +zk, (5)

wherew,x,y,z∈R andi, j ,k are distinct imaginary numbers. When a quaternion has
unit magnitude, it is called a unit quaternion and corresponds to a unique rotation
matrix. A unit quaternion can be represented using rotation axisn̂ and rotation
angleθ as:

Q̂ = cos
θ
2

+ n̂sin
θ
2

= en̂ θ
2 , (6)

wheren̂ is a pure quaternion. The logarithm of a unit quaternion is defined as the
inverse of the exponential:

q = lnQ̂ =
θ
2

n̂. (7)

7

Fig. 2. Deformed shapes. (a) Original shape; (b) deformed shape without the rotation of
normals; and (c) deformed shape with the rotation of normals.

We assign logarithmqi ∈ R3 to vertexi and denote the logarithms assigned to all
vertices asQ = {q1,q2, . . . ,qn}. Whenqi is equal to0, the mean curvature normal is
not rotated; whenqi = v j is specified, the mean curvature normal is rotated around
axisv j/|v j | by angle2|v j |.

Shoemake [31] proposed spherical linear interpolation between two unit quater-
nions. Johnson [32] applied spherical linear interpolation to multiple unit quater-
nions using logarithms of the unit quaternions. Pinkall and Polthier [33] proposed
an interpolation technique using discrete conformal mapping. Zayer et al. [28] ap-
plied discrete conformal mapping to the interpolation of unit quaternions. We in-
troduce similar constraints on the logarithms of unit quaternions:

L(qi) =
1

4Ai
∑

j∈N(i)
(cotαi j +cotβi j)(qi −q j) = 0. (8)

Then we assignqi = 0 at each fixed vertex andqi = vi at each handle vertex, where
v j is a quaternion logarithm specified by the user. We generally describe these
constraints as:

g j(Q j) = v j (Q j ⊂ Q,v j ∈ R3). (9)

8

As a result, linear equations for rotations can be described as:

{
L(qi) = 0 (i = 1,2, . . . ,n)
g j(Q j) = v j (j = 1,2, . . . ,m),

(10)

wheren is the number of vertices andm is the number of user-defined constraints
on rotations. These equations construct a sparse linear system and can be solved
using sparse direct solvers [30]. The solution of this linear system generates certain
energy-minimization surfaces [33] in 3D space spanned by logarithms of the unit
quaternions.

When all components ofQ are calculated, a rotation matrixR(qi/|qi |,2|qi |) is
uniquely determined for each vertex. Figure 2 shows a mesh model that contains
patterns on a plane. While the patterns with constant normals are distorted, as
shown in Figure 2b, the ones in Figure 2c are smoothly deformed because the mean
curvature normals are rotated according to rotation of a handle region.

4 Preserving Form Features

4.1 Preserving the shapes of form features

We define a form feature as a partial shape that has an engineering meaning, such
as a hole or a protrusion. In the mesh modelM(K,P), a form feature is a submesh
that consists of the simplicial subcomplex ofK and the subset of verticesP. We
denote a form feature asF and the index set of vertices in form featureF asΛF .
We obtain a spanning tree by traversing edges in a form-feature region, as shown in
Figure 3. Spanning trees are used to avoid redundant constraints for form features.
We denote edges in the spanning tree asTF .

When form featureF is translated and rotated while preserving the original shape,
the following constrains need to be added for the rotations and vertex positions:

{
qi −q j = 0 (i, j ∈ ΛF ;(i, j) ∈ TF)

pi −p j = sFR(ni , θi)(p0
i −p0

j) (i, j ∈ ΛF ;(i, j) ∈ TF),
(11)

wheresF is the scaling factor of the form feature. The first equation in (11) shows
thatqi must be the same in the form-feature region, because each vertex in the form
feature has the same rotation matrix. The second equation in (11) preserves the
relative positions of the vertices in the form feature. These equations for rotations
and positions are added to Equations (2) and (10).

9

In some cases, a form feature has to retain the original direction, depending on the
design intention. Then the following equations are added to (2) and (10) instead of
Equation (11):

{
qi = 0 (i ∈ ΛF)

pi −p j = sF(p0
i −p0

j) (i, j ∈ ΛF ;(i, j) ∈ K).
(12)

Figure 4 shows deformed shapes that contain circle holes. The fixed and handle
regions are shown in Figure 4a. While the unconstrained circles in Figure 4b are
stretched, the circle shapes in Figure 4c–e are maintained by constraints on relative
positions. In Figure 4e, four small holes are constrained by Equation (11), but the
center hole is constrained to preserve the original direction using Equation (12).

Fig. 3. Spanning tree in a form-feature region.

4.2 Constraining the motion of form features

In computer-aided design, it is useful to constrain the motion of a form feature. The
positions of form features are often specified using datum lines or planes.

The motion of a form feature can be maintained on a straight line or a plane by
constraining a point in the form feature. A constrained point can be specified as
a linear function of vertex positions. For example, the center position of a circle
can be specified as the function0.5(pi +p j) using two vertex positions on opposite
sides. Here, we simply represent a linear combination of coordinates{pi}(i ∈ ΛF)
asx = (x,y,z).

4.2.1 On-plane constraints

A plane is uniquely determined by its normal vector and a point on the plane.
We represent the equation of a plane asn(x− p) = 0, wheren = (nx,ny,nz) is

10

Fig. 4. Constrained deformation. (a) Original shape; (b) deformed shape with no form-fea-
ture constraints; (c) stretched shape with the shapes of circles preserved; (d) deformed
shape with five rotated circles; and (e) deformed shape with the direction of the center
circle preserved.

Fig. 5. Form feature moved on (a) a plane and (b) a straight line.

the normal vector andp = (px, py, pz) is a point on the plane. Then the following
equation constrains the motion of a form feature on the plane:

nxx+nyy+nzz= nxpx +nypy +nzpz. (13)

Since positionp appears on the right-hand side of Equation (13), planes can be
interactively moved to their normal directions.

11

Figure 5a shows a deformed shape in which a hole feature is constrained on a plane
when the handle region is moved.

4.2.2 On-line constraints

A straight line can be represented asx = kn+p. Let l, m andn be unit vectors that
are perpendicular to each other. Then position(x,y,z) moves on the straight line
using the following constraints:

{
lxx+ lyy+ lzz= lxpx + lypy + lzpz

mxx+myy+mzz= mxpx +mypy +mzpz.
(14)

Straight lines can be moved interactively to directions that are perpendicular ton.
This capability is useful for moving the centers of circles on 2D drawings.

In Figure 5b, a form feature moves on a straight line according to the motion of the
handle region.

4.3 Feature extraction

In our system, the user selects the form-feature regions and then adds linear con-
straints to the form features. It may be tedious work for the user to carefully se-
lect the region before specifying constraints. Therefore, we introduce an interactive
mesh segmentation technique for easy selection of form-feature regions.

So far, many segmentation algorithms have been reported [34–38]. Our segmenta-
tion algorithm is based on the method proposed by Katz and Tal [37], but we apply
the method only to user-specified regions [39].

Figure 6 shows a feature extraction process. First, the user roughly selects a region
that includes the boundary of a feature region, as shown in Figure 6b. The region
must be selected so that the mesh model is exactly separated into two regions. Then
the optimal cut is calculated by the maximum-flow, minimum-cut algorithm [37].
Finally, the feature region is separated, as shown in Figure 6c.

5 Experimental Results

Figure 7 shows examples of some deformed shapes. In industrial design, character
lines are extremely important. If a deformation process modifies the character lines
of a product shape, the resultant shape will not be accepted by the designers. In

12

Fig. 6. Feature extraction: (a) original shape; (b) region selected by the user; and (c) the
extracted region.

Figure 7a, no form features are specified and the character lines are warped in
unintended ways. In Figure 7b, the character lines are specified as form features
and are thus preserved after the shape is deformed.

Figure 8 shows the front grille part of an automobile model. While Figure 8b con-
tains no form-feature constraints, Figure 8c has form-feature constraints around the
cavities. Deformation in Figure 8b destroys the design intent, but Figure 8c main-
tains the shapes of the cavities. In Figure 8d, the scaling factors of form features in
Equation 12 are modified in an interactive manner.

Figure 9 shows a sheet metal panel. The 16 cavities shown by arrows are con-
strained so that they rotate while the original shapes are preserved.

Table 1 shows the CPU time for calculating the deformed models in Figures 7–9.
Factorization of matrices was performed using SuperLU [40], which is a sparse
linear system solver based on LU decomposition. The CPU time was measured for
setting up matrices and factorizing them on a 1.50-GHz Pentium-M PC with 1 GB
of RAM. Once the matrix was set up and factorized, the shape could be deformed
at an interactive rate. This result shows that the performance of our framework is
adequate for interactive applications.

Vert Soft Hard Feat Time

Figure 7 3337 5796 3826 3702 0.86

Figure 8 13974 25458 9334 1072 4.69

Figure 9 2982 6084 3308 3202 0.99
Table 1
CPU time for setting up and factorizing linear systems. Vert: number of vertices; Soft:
number of soft constraints; Hard: number of hard constraints; Feat: number of form-feature
constraints; Time: CPU time (s).

13

Fig. 7. Door panel. (a) Shape deformed without form-feature constraints. The character
lines are warped. (b) Shape deformed with form-feature constraints on the character lines.

Fig. 8. Front grille: (a) original shape; (b) shape deformed without form-feature constraints;
(c) shape deformed with form-feature constraints; and (d) interactive scaling of form fea-
tures.

Fig. 9. Sheet metal part. Top: original planar shape. Bottom: deformed shape with rotated
form features shown by arrows.

14

6 Conclusions and Future Work

We have presented a discrete framework for incorporating constraints of form fea-
tures using a hard constraints approach. We solved a combination of soft and hard
constraints using the Lagrange multiplier method. We rotated mean curvature nor-
mals and form features by interpolating quaternion logarithms. Constraints on rota-
tions and positions are separately solved as two sparse symmetrical matrices, which
are known for the existence of efficient solvers. We showed how to constrain the
shape and motion of form features; shape constraints can preserve the shapes of
form features and motion constraints confine movement on a plane or a straight
line. These constraints are convenient for deforming 3D models while preserving
form features.

In future work, it will be important to develop more intuitive GUI tools such as
sketch-based interfaces [41]. In addition, it will be useful to incorporate a geometric
reasoning engine into our framework for modifying the shapes of form features
using parameters. Our current solver is based on SuperLU, which is relatively slow
for very large systems [30]. More efficient linear solvers may be required to deform
very large models. Finally, our framework handles only linear constraints, while
some design constraints require non-linear equations. We would like to investigate
how to handle non-linear constraints in an interactive environment.

Acknowledgements

This work was partly funded by Mitsubishi Motors Corporation (MMC) and the 3D
models of automobile parts in Figures 7 and 8 are reproduced courtesy of MMC.

References

[1] Fontana, M., Giannini, F., Meirana, M. A free-form feature taxonomy. Computer
Graphics Forum 1999;18(3):107–118.

[2] Cavendish, J. C. Integrating feature-based surface design with freeform deformation.
Computer-Aided Design 1995;27(9):703–711.

[3] Sederberg, T. W., Parry, S. R. Free-form deformation of solid geometric models. in:
Proceedings of SIGGRAPH 1986. 1986. pp. 151–160.

[4] Coquillart, S. Extended free-form deformation: a sculpturing tool for 3D geometric
modeling. in: Proceedings of SIGGRAPH 1990. 1990. pp. 187–196.

[5] MacCracken, R., Joy, K. I. Free-form deformations with lattices of arbitrary topology.
in: Proceedings of SIGGRAPH 1996. 1996. pp. 181–188.

15

[6] Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.-P. Laplacian
surface editing. in: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing. 2004. pp. 175–184.

[7] Botsch, M., Kobbelt, L. An intuitive framework for real-time freeform modeling. ACM
Transactions on Graphics 2004;23(3):630–634.

[8] Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y. Mesh editing
with Poisson-based gradient field manipulation. ACM Transactions on Graphics
2004;23(3):644–651.

[9] Sorkine, O. Laplacian mesh processing. in: STAR Proceedings of Eurographics 2005.
2005. pp. 53–70.

[10] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.
Multiresolution analysis of arbitrary meshes. in: Proceedings of SIGGRAPH 1995.
1995. pp. 173–182.

[11] Zorin, Z., Schr̈oder, P., Sweldens, W. Interactive multiresolution mesh editing. in:
Proceedings of SIGGRAPH 1997. 1997. pp. 259–268.

[12] Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.-P. Interactive multi-resolution
modeling on arbitrary meshes. in: Proceedings of SIGGRAPH 1998. 1998. pp. 105–
114.

[13] Guskov, I., Sweldens, W., Schröder, P. Multiresolution signal processing for meshes.
in: Proceedings of SIGGRAPH 1999. 1999. pp. 325–334.

[14] Lee, S. Interactive multiresolution editing of arbitrary meshes. Computer Graphics
Forum 1999;18(3):73–82.

[15] Bloor, M. I. G., Wilson, M. J. Using partial differential equations to generate free-form
surfaces. Computer-Aided Design 1990;22(4):202–212.

[16] Schneider, R., Kobbelt, L. Generating fair meshes with g1 boundary conditions.
in: Proceedings of the 2000 International Conference on Geometric Modeling and
Processing. 2000. pp. 251–261.

[17] Desbrun, M., Meyer, M., Schröder, P., Barr, A. H. Implicit fairing of irregular meshes
using diffusion and curvature flow. in: Proceedings of SIGGRAPH 1999. 1999. pp.
317–324.

[18] Yamada, A., Furuhata, T., Shimada, K., Hou, K.-H. A discrete spring model for
generating fair curves and surfaces. in: Pacific Conference on Computer Graphics and
Applications. 1999. pp. 270–279.

[19] Taubin, G. A signal processing approach to fair surface design, in: Proceedings of
SIGGRAPH 1995. 1995. pp. 351–358.

[20] Catalano, C. E., Falcidieno, B., Giannini, F., Monti, M. A survey of computer-aided
modeling tools for aesthetic design. Journal of Computer and Information Science in
Engineering 2002;2(11):11–20.

16

[21] Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.-Y. Large mesh
deformation using the volumetric graph Laplacian. ACM Transactions on Graphics
2005;24(3):496–503.

[22] Alexa, M. Differential coordinates for local mesh morphing and deformation. The
Visual Computer 2003;19(2–3):105–114.

[23] Botsch, M., Bommes, D., Kobbelt, L. Efficient linear system solvers for mesh
processing. in: IMA 2005 Conference on the Mathematics of Surfaces. 2005. pp. 62–
83.

[24] Welch, W., Witkin, A. Variational surface modeling. in: Proceedings of SIGGRAPH
1992. 1992. pp. 157–166.

[25] Yoshioka, Y., Masuda, H., Furukawa, Y. A constrained least-squares approach to
interactive mesh deformation. in: Proceedings of the 2006 International Conference
on Shape Modeling and Applications. 2006. pp. 153–162.

[26] Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.-P. Differential
coordinates for interactive mesh editing. in: Proceedings of the 2004 International
Conference on Shape Modeling and Applications. 2004. pp. 181–190.

[27] Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D. Linear rotation-invariant coordinates
for meshes. ACM Transactions on Graphics 2005;24(3):479–487.

[28] Zayer, R., R̈ossl, C., Karni, Z., Seidel, H.-P. Harmonic guidance for surface
deformation. Computer Graphics Forum 2005;24(3):601–609.

[29] Meyer, M., Desbrun, M., Schröder, P., Barr, A. H. Discrete differential-geometry
operators for triangulated 2-manifolds. in: Visualization and Mathematics III. 2003.
pp. 35–57.

[30] Gould, N. I. M., Hu, Y., Scott, J. A. A numerical evaluation of sparse direct solvers for
the solution of large sparse, symmetric linear systems of equations. Technical Report
RAL-TR-2005-005. Council for the Central Laboratory of the Research Councils.
2005.

[31] Shoemake, K. Animating rotation with quaternion curves. in: Proceedings of
SIGGRAPH 1985. 1985. pp. 245–254.

[32] Johnson, M. P. Exploiting quaternions to support expressive interactive character
motion. Ph.D. thesis. Massachusetts Institute of Technology, School of Architecture
and Planning, Program in Media Arts and Sciences. 2003.

[33] Pinkall, U., Polthier, K. Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics 1993;2(1):15–36.

[34] Mangan, A. P., Whitaker, R. T. Partitioning
3D surface meshes using watershed segmentation. IEEE Transaction on Visualization
and Computer Graphics 1999;5(4):308–321.

[35] Chazelle, B., Dobkin, D. P., Shouraboura, N., Tal, A. Strategies for polyhedral
surface decomposition: An experimental study. Computational Geometry: Theory and
Applications 1997;7(4–5):327–342.

17

[36] Shlafman, S., Tal, A., Katz, S. Metamorphosis of polyhedral surfaces using
decomposition. Computer Graphics Forum 2002;21(3):219–228.

[37] Katz, S., Tal, A. Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics 2003;22(3):954–961.

[38] Katz, S., Leifman, G., Tal, A. Mesh segmentation using feature point and core
extraction. The Visual Computer 2005;21(8–10):649–658.

[39] Masuda, H., Furukawa, Y., Yoshioka, Y., Yamato, H. Volume-based cut-and-paste
editing for early design phases. in: ASME 2004 Design Engineering Technical
Conference and Computer and Information Engineering Conference. 2004.

[40] Demmel, J., Gilbert, J., Li, X. SuperLU User’s Guide. 1995.

[41] Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D. A sketch-based interface for detail-
preserving mesh editing. ACM Transactions on Graphics 2005;24(3):1142–1147.

18

