# 大規模計測点群のための 形状処理技術

#### 東京大学大学院工学系研究科 システム創成学専攻 増田 宏

#### 本日の内容



1



#### 中長距離のレーザ計測装置







# 点の描画(色付き点群)





- 法線付き点群
  - 点データ:座標+法線
    - 法線は近傍点を使って 計算する.
  - ライトの設定や視点に 応じて, 描画の明暗が 変化する.
- 問題点
  - 点の粗密への対応
  - 拡大・縮小への対応
    - 近付くと点の集まり.



7







# 平滑化の方法 高周波除去フィルタ 周波数の高い信号と低い信号が混在するとき、 低周波の信号のみを取り出す. 2次曲面当てはめ 点群が滑らかな2次曲面上に乗っていると見做して、位置を補正する.



#### 高周波除去フィルタ

 Taubin のフィルタ
 ノイズの振幅が点の間隔に比べて大きいと ノイズが取れない!

計測点群

フィルタ×50回 (これ以上改善しない)

14

点群を間引いてから

フィルタ×50回

# 高周波除去フィルタを用いた平滑化









#### 平滑化の計算時間 計算時間の比較 単位時間あたりに処理できる点の個数 points/sec MLS 2143 1.0 Lorentzian estimation ノイズ 1150 に強い 0.8 Tukey's biweight 1654 20









#### 陰関数を利用したメッシュ生成

- 利点
   のを自動的に塞ぐ
- 欠点
  - 解像度に限界
  - 粗密や欠落のある点群は苦手
  - 形状に予期できない不具合.







高解像度

低解像度





グリッド

 $grid k_1$   $i_2$   $i_3$   $i_4$ ( $k_2$ ,  $j_1$ ) ( $k_2$ ,  $j_2$ ) 隣接関係の表現





# 曲面計算の方法





#### 曲面の計算



#### 6. フィーチャモデリング





### 大規模メッシュへの画像インタフェース



#### 領域成長法によるフィーチャ抽出





# 多角柱フィーチャの作成





# フィーチャの編集操作



#### 曲面計算の安定性



#### 計算精度向上のための制約



# 規格寸法







# **例**題1







# <section-header><section-header><section-header><image>

# まとめ

- 点群処理のための基本的な技術を紹介した.
- 本研究室で開発した手法や形状モデリン グシステムを紹介した