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Abstract 
 
Recently, mid-range and long-range laser scanners for measuring 
large-scale facilities have made remarkable progress. In this 
paper, we discuss reverse engineering of large engineering 
facilities using those scanners. Our goal is to estimate shape 
parameters of components in engineering facilities. Although the 
state-of-the-art laser scanners can produce hundreds of millions 
point data in several minutes, those data tend to include large 
noises and quite a lot of outliers. In addition, the locations of 
scanners are restricted in most engineering facilities, and 
therefore components in facilities are measured only from one 
side and sometimes are partially occluded by other ones. In this 
paper, we first investigate robust surface estimators for 
smoothing point-clouds and compare the efficiency and quality of 
four smoothing methods. Then, we will show how to extract 
shape parameters as precisely as possible by considering 
industrial standards and assembly constraints. 
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1 Introduction 
 
The rapid progress of laser scanners has accelerated the research 
on reverse engineering. However, most research activities in the 
CAD community concentrate on relatively small mechanical 
parts that are measured by triangulation-based scanners. 
Triangulation-based scanners can precisely measure mechanical 
parts, but they typically cover only within a range of a few meters. 
Therefore, triangulation-based scanners are not suitable for 
measuring large objects such as factories, power plants and 
logistics centers.  
 
In recent years, 3D shape acquisition of large engineering 
facilities, such as industrial plants and power plants, has been 
receiving increasing attention in surveying communities. One of 
useful applications is 3D simulation of complicated maintenance 
and repair tasks. It is widely recognized that model-based 
planning based on 3D CAD reduces the rework of maintenance 
tasks to a large extent.  Currently, one of the biggest obstacles 
that prevent model-based simulation is that old facilities lack not 
only 3D CAD models but also reliable drawings, because many 
engineering facilities were built one or more decades ago and 
have been repeatedly renovated in their long lifecycles.  In such 
cases, it is very useful to generate 3D as-built models by 
measuring real facilities.  
 
While triangulation-based scanners are popular in the CAD 
community, mid-range and long-range laser scanners have made 
remarkable progress in the field of surveying. Mid/long-range 
scanners have been mainly used for surveying large-scale 
facilities, geography and infrastructures. We intend to use 
mid/long-range scanners for creating 3D models for digital 
factories. 
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Two types of scanners, the time-of-flight scanners and the phase-
based scanners, are typically used for surveying.  
 
The time-of-flight scanner measures the round-trip travel time of 
the laser pulses. This type of scanner is called a long-range 
scanner, which can measure in the range of a few hundred meters. 
However, it takes a lot of time to measure many points that cover 
large facilities, because the time-of-flight scanner must wait a 
round-trip laser pulse for each point.   
 
The phase-based scanner is called a mid-range scanner. The state-
of-the-art phase-based laser scanners can measure objects up to 
79 meter [1] or 120 meter [2]. This type of scanners radiates 
continuous modulated laser pulses and calculates distances using 
the phase difference between the emitted and received signals. 
One great advantage of this type of scanner is that it can measure 
two hundred million points in several minutes. These measuring 
range and speed allow to measure manufacturing factories in 
non-operating hours, and therefore we believe that the phase-
based scanners are sufficient for measuring most engineering 
facilities.  
 
For modeling components in engineering facilities, it is important 
to extract surface equations of components and to determine their 
shape parameters as precisely as possible. This is because most 
components in engineering facilities are industry standard 
components, which consist mostly of simple surfaces, such as 
planes, cylinders, cones, spheres, and tori. For this purpose, we 
have to solve the following problems. 
(1) The detection of surface regions using very noisy point data. 
(2) The calculation of surface equations using incompletely 

scanned point data. 
 
Since mid-range and long-range scanners produce very noisy 
point data compared to triangulation-based scanners, it is not easy 
to precisely extract shape parameters.  Especially, 3D point data 
acquired by the phase-based laser scanner include large noises 
along the laser pulses. Figure 1 shows point data captured from a 
power plant and their mesh model. Since a certain rate of distance 
errors are greater than 6 mm, the surface of a mesh model often 
becomes “prickly,” as shown in Figure 1(c).  
 
Region-growing [3, 4] is a typical surface extraction method for 
detecting planes, cylinders, cones, spheres and tori in point-
clouds. This method starts from a small seed region and extends 
the boundary of the region by checking if neighbor points satisfy 
the surface equation. Since noisy data prevent to grow regions, it 
is highly required to smooth point data. Other segmentation 
techniques [5, 6] have also difficulties in cases of noisy data, 
because they use local differential properties, which can be 
calculated on smooth surfaces. 
 
In addition, the locations of a scanner are restricted in 
engineering facilities. As a matter of course, it is not allowed to 
disassemble factories for surveying components. Therefore most 
components are measured only from one or two sides and some 
components are partially occluded by other ones. Special care 
must be taken for stably calculating shape parameters. 
 
In this paper, we introduce robust estimators for smoothing very 
noisy point-clouds and compare the efficiency and quality of the 



methods. Then, we will discuss how to extract shape parameters 
as precisely as possible.  
 
In the following section, we will explain smoothing operators 
based robust estimate. Section 3 presents how to detect shape 
parameters from incomplete point data. Section 4 states 
conclusions. 
 

 
2 Smoothing of Noisy Point Data 
 
2.1  Smoothing of Scanned Point Data 
The moving-least-squares (MLS) method is a popular tool for 
generating smooth surfaces [7–9]. The MLS projection calculates 
a locally smooth surface around each point and projects the point 
onto the smooth surface.  
 
However, MLS projection often fails to preserve geometric 
features, when outliers and high levels of noise are involved in 
point data. Figure 2 shows a result of MLS projection. As shown 
in this figure, smooth planes become bumpy and sharp edges and 
corners are not preserved. This is because the mid/long range 

scanner produces much more outliers and much larger noises 
than the triangulation-based scanner. Point data in this paper were 
captured by Z+F Imager 530 [1], which is a mid-range phase-
based scanner. 
 
For smoothing noisy point data, we introduce smoothing methods 
based on robust estimate. Roughly speaking, robust estimate 
reduces impacts of outliers by assigning small weights to them. 
In our previous paper [10], we introduced robust estimate based 
on Lorentzian distribution. In this paper, we implement other 
robust estimators and compare their efficiency and quality.    

 
2.2 Conventional MLS Projection 
We will briefly explain the conventional MLS projection [7, 8] 
using Figure 3. This method smoothes point x as follows: 
(1) Neighbor points of x are detected. 
(2) Approximate plane H is calculated (Figure 3(a)). 
(3) Reference point q is calculated by projecting x on H. 
(4) Neighbor points are projected on H and a height field is 

generated. 
(5) A quadratic surface is fitted to the height field (Figure 3(b)). 
(6) The original x is projected on the surface. 
 
Let ( | ) 0S =x a  be the equation of a quadric polynomial 
surface, which is used to locally approximate the neighborhood 
of point x. { }ka=a  (1 )k M≤ ≤  denotes parameters of the 
surface. M is the number of parameters.   
 
Then, the quadratic surface is calculated by: 
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where σ is the standard deviation of ( | )iS x a ; N  is the 
neighbor points; q  is a reference point. χ is a monotonically 
decreasing function typically defined by the Gaussian:  
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where h  is a scaling parameter reflecting the spacing between 
neighboring points.  
 

 

 
(a) Point data 

 

 
(b) Noisy mesh model 

 

 
(c) Close-up of the noisy mesh model 

Figure. 1: Noisy mesh model constructed from point data 
captured by a phase-based scanner. 

 

 
(a) Projection onto plane H  (b) Projection onto a quadratic surface

Figure. 3: MLS projection 

 

    
Figure.2: Smoothing by Conventional MLS projection  



It is well-known that the least-squares method is sensitive to 
outliers. MLS projection is effective only when the number of 
outliers is relatively small. Therefore, we introduce robust 
surface estimators, which can stably calculate quadratic surfaces 
even when many outliers are included in point data. 
      
2.3 Robust Estimate 
For robustly smoothing noisy point-clouds, we assume 
probability density functions for the distribution of residuals and 
then calculate the maximum likelihood surfaces. This approach 
can be formalized as M-estimate [11-13]. While the conventional 
MLS projection implicitly assumes the normal distribution, 
which is sensitive to large noises and outliers, we design a new 
smoothing operator on the basis of more robust distribution 
functions. 
 
Let points 3

i ∈x R (1 )i N≤ ≤ be sampled from a smooth 
surface.  
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where σ  is the standard deviation of the values of ( | )iS x a . 

Given the probability density function ( )f r , the maximum 

likelihood estimate â  can be calculated as:  
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where ( )( ) log ( )i ir f rρ = − .  
 
We introduce a new MLS-like surface estimator based on robust 
estimate. The smooth surface is then calculated as:  
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When ( )rρ  is differentiable, â  can be solved by:  
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is a weighting function of point ix . 
 
Figure 4(a) shows a weight function of normal distribution, 
which is assumed by the conventional MLS projection. This 
weight function implies that the larger residuals have larger 
weights, and therefore, the impacts of outliers are amplified. This 
is the reason why outliers must be carefully eliminated when 
MLS projection is applied to point data. 
 
2.4 Lorentzian Surface Estimator 
Suppose the Lorentzian distribution 2( ) log(1 )r rρ = +  for 
Equation 2.6. Then, the maximum likelihood surface can be 
calculated as:  
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The weight function of the Lorentzian distribution is: 
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Figure 4(b) shows the weight function of the Lorentzian 
distribution. This weight function implies that larger residuals 
have smaller weights, and outliers will have no practical impact 
on the estimation of parameters. Therefore, surface estimation 
based on Equation 2.9 is more robust than conventional MLS 
projection.  
 
2.5 Surface Estimation by Tukey’s Bi-Weight 
As shown in Figure 4(a)(b), the robustness of smoothing operators are 
mainly determined by the design of weight functions. Various robust 
estimators can be designed so that large residuals have small weights. 
Tukey designed the following weight function using polynomial curves 
shown in Figure 4(c):   
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This function is called the Tukey’s bi-weight function, which is not 
based on any well-known distribution density functions. When points 
have residuals that exceed c, their weights become 0. The value of c is 

  
(a) Normal distribution  (MLS) 

 
(b) Lorentzian distribution 

 
(c) Tukey’s bi-weight 

 
Figure 4: Weight functions for surface estimation 



typically 6, which means that points in 6σ  are only considered for 
surface estimation.  
 
2.6 Smoothing on a Spherical Height Field  
The distance image, which maintains the distance from the origin 
at each pixel, is popular in computer vision community. In the 
case of mid-range and long-range scanners, the direction of a 
laser beam can be represented using an azimuth angleθand an 
elevation angle φ, as shown in Figure 5(a)(b), and all measured 
points can be mapped on the θ-φ plane and be represented as (r, 
θ,φ), where r is the distance in the direction (θ,φ) (Figure 5(c)). 
Since each pixel in Figure 5(c) has a distance, the image can be 
regarded as a distance image. 
 
Distance images can be smoothed by locally fitting quadratic 
surfaces to distances on the  θ-φ plane. We apply a robust 
estimator based on the Tukey’s bi-weight to the distance image in 
Figure 5(c) and investigate the quality and efficiency.  

 
 
2.7 Experimental Results 
Figure 6 shows experimental results of smoothing operators. 
Mesh models were generated by Delaunay triangulation on the 
θ-φ plane using smoothed point-clouds.   
 
Figure 6(a) is the result of the conventional MLS projection. As 
shown previously, this method produced a bumpy model.  
 
Figure 6(b) was smoothed by the Lorentzian surface estimator 
and 6(c) by the Tukey’s bi-weight. The both cases preserved 
features better than the conventional MLS projection.   
 
Figure 6(d) was smoothed as the distance image using Tukey’s 
bi-weight. As shown in this figure, this method could not produce 
smooth surfaces. In our experiments, the smoothing on the 
reference planes was better than the one on the θ-φ plane.  
 

 
 

 
(a) Normal distribution  

 

 
(b) Lorentzian distribution 

 

 
(c) Tukey’s bi-weight 

 

 
(d) Smoothing distances by Tukey’s bi-weight 

 
Figure 6: Results of smoothing operators 

 
(a) Rotation angles.   (b) Definition of φ and θ. 

(c) Height field on θ-φ plane. 
 
Figure 5:  Height field generated by point data captured by a 

phase-based scanner.                



Table 1 shows how many points could be processed by 
smoothing operators. The result shows robust estimate based on  
the Lorentzian distribution was the most time-consuming, and the 
conventional MLS projection was the fastest. Considering the 
quality and performance of smoothing operators, we have 
concluded that  Tukey’s bi-weight is the best operator among the 

four, because the quality of Figure 5(b) and 5(c) are almost same 
and Tukey’s bi-weight is 40 % faster than the Lorentzian 
estimator. 
 
3 Surface Fitting  
 
3.1 Problems of Surface Extraction 
When facilities are measured by laser scanners, the locations of 
scanners are often restricted and most components are measured 
only from one side. In addition, components may be partially 
hidden by other parts. Generally, the following cases are difficult 
to precisely calculate surface parameters:  

(1) Partially hidden components. 
(2) Dark-colored components. 
(3) Slim or short components. 

Since dark-colored components absorb the energy of laser beams, 
returned signals become weak and noisy.  
 
It is required to calculate shape parameters in such conditions as 
faithfully and precisely as possible. 
 
3.2 Surface Fitting  
For detecting surface parameters as faithfully and precisely as 
possible, we apply the fitting method proposed by Lukacs, et al. 
[14].  
 
This method represents the distance function between surface 

( | ) 0S =x a  and point ip  as the following form: 

( , ) ( , ) ( , )i i id g h= −a p a p a p , (3.1) 

where g and h  are functions of parameters a  and the 

coordinate of ip . For example, the distance from a cylinder can 
be described as:  

( , ) distance( , )i id axis r= −a p p ,           (3.2) 
where axis is the straight line of the cylinder axis, and r is the 
radius of the cylinder.  
 
In order to get rid of the square root of 2( , )id a p , Lukacs 
minimized :  

2 22( , ) {( ) / 2 }id g h h= −∑ ∑s p%                    (3.2) 

instead of 22( )g h−∑ , because the minimization of 22( )g h−∑  
amplifies the impact of noises and flattens the neighborhood of 
the solution. ( , )id s p%  has the same derivative values as 

( , )id s p when ( , ) ( , ) 0d d= =s p s p% . The minimization of 
this function tends to produce more stable and faithful fitting 
results than the ones of 22( )g h−∑  and 2( , )id a p .  
 
We implemented surface fitting methods for planes, spheres, 
cylinders, cones, and tori by minimizing Equation 3.2 using non-

linear optimization. Table 2 shows the number of parameters for 
each surface type. Generally, it is more difficult to precisely 
calculate surface parameters when the degree-of-freedom is 
larger. In addition, results are prone to noises when components 
are partially-hidden, dark-colored, short, or slim. In our 
experiments, the calculation of parameters often fails in such 
cases.  
 
To solve this problem, we try to reduce the degree-of-feedom 
(DOF) by using the industrial standards and assembly constraints. 
 

Table. 2: The DOF of primitive surfaces  
plane sphere cylinder cone torus 

3 4 5 6 7 
 
3.3 Standards of Components 
We maintain standard parameter lists and use them for surface 
fitting. For example, the diameters of pipes must be ones in Table 
3 according to JIS standards.  
 
When standards are incorporated, the feature-based modeling 
approach is useful. In our current implementation, the user first 
selects a feature type, which restricts parameter types and values, 
and then specifies a seed region for surface fitting by the region 
growing. Then the system grows the seed region and calculates 
surface parameters, which are selected as the nearest values in 
standard parameters. Finally, the system calculates surface 
parameters again by constraining the standard parameters to 
refine other unconstrained parameters. This approach is 
practically powerful for calculating surface equations precisely. 
 

Table. 3:  Diameters of pipes (JIS Standard)  
10.5 13.8 17.3 21.7 27.2 
34.0 42.7 48.6 60.5 76.3 
89.1 101.6 114.3 139.8 165.2 
190.7 216.3 267.4 318.5 355.6 
406.4 457.2 500 508.8 558.8 
...     

 
 
3.4 Assembly Constraints  
Components are often connected to other components whose 
parameters are determined. Then we can reduce the number of 
parameters using assembly constraints. Assembly constraints 
include the following conditions: 

(1) The radii are the same.   (DOF→ ‐1) 
(2) The axises are coaxial. (DOF→ ‐4) 
(3) The axises are parallel.  (DOF→ ‐1) 
(4) The planar faces are on the  same plane. (DOF→ ‐3) 
(5) The planar faces are parallel. (DOF → ‐2) 
(6) Circle faces are coincident.  (DOF: depends on types) 

 
Since the minimization of Equation 3.3 is highly non-linear, 
assembly constraints make the calculation much more stable. The 
number of parameters can be further reduced by combining the 
industrial standards. 
 
We implemented various minimization  routines according to the 
types of assembly constraints. Figure 7 shows 3D models 
generated using constrained surface fitting. Figure (a)-(c) show 
examples that the system failed to calculate correct parameters 
when assembly constraints were not specified.  
 
Figure 7(a) shows a partially-hidden cylinder, which was 
modelled using the same radius constraint. Figure 7(b) shows a 
coaxis cylinder. Since the height of this cylinder is short, the axis 
of the cylinder is prone to errors. Figure 7(c) shows a torus 
surface calculated using the same circle constraints. The 
calculation of tori is difficult in many cases because the DOF of 
tori is seven. Figure 7(d) shows 10 connected components. 

Table.1 Performance 
 points/sec 

MLS 2143 
Lorentzian estimator 1150 

Tukey’s bi-weight estimator 1654 
Smoothing distances 1789 

 



 
4 Conclusion 
In this paper, we first discussed smoothing operators and 
compared the efficiency and performance of four types of 
operators. In our experiments, the surface estimator based on 
Tukey’s bi-weight was the best among the four operators. Then 
we explained surface fitting methods based on the region 
growing and showed the industrial standards and assembly 
constraints were effective to calculate the surface equations of 
partially-hidden, dark-colored, short, or slim components. 
 
In future work, we would like to automate surface detection and 
to support a rich set of features in our modeling system. In 
addition, we would like to improve the performance of smoothing 
operators. 
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(a) Partially hidden cylinder with the same radius. 

 

(b) Co-axis short cylinder.      (c) Torus with the same circles. 
 

(d) 3D models of connected components. 
 

Figure 7: Experimental results of surface fitting 
 


