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Abstract

Interactive mesh editing techniques that preserve discrete differen-
tial properties are promising to support the design of mechanical
parts such as automobile sheet metal panels. However, existing
methods lack the ability to manipulate form-features and hard con-
straints, which are common in engineering applications. In product
design, some regions on a 3D model are often required to precisely
preserve the surface types and parameters during deformation. In
this paper, we propose a discrete framework for preserving the
shapes of form-features using hard constraints in interactive shape
deformation. Deformed shapes are calculated so that form-features
translate and rotate while preserving their original shapes according
to manipulating handles. In addition, we show how to constrain the
motion of form features using linear constraints. The implemented
system can achieve a real-time response for constrained deforma-
tion.

Keywords: engineering design, geometric feature, mesh process-
ing, deformation, partial differential equation

1 Introduction

In product design, 3D models are often created in the early stage
of product development, because such models are very effective for
preliminary design evaluation by the development team. The eval-
uation of design concepts in the early stage helps products to meet
requirements for manufacturing, cost, safety, quality, maintenance,
and so on.

Interactive free-form surface modeling techniques are very impor-
tant in the early stage of design. Since design concepts are very
often changed or discarded in the early stage, it is not reasonable
to spend a lot of time on creating detailed 3D models. Although
non-uniform rational B-spline (NURBS) surfaces have been widely
used to represent free-form shapes in CAD applications, it is very
tedious and time-consuming to manipulate many surface patches
with a large number of control points.

Free-form deformation (FFD) is a popular interactive technique in
computer graphics applications. FFD changes geometric shapes by
deforming the space in which the object lies. However, FFD is
not necessarily convenient for supporting product design, because
it often modifies product shapes in unintended ways, for example,
circular holes are deformed to ellipses.

In the last few years, several discrete deformation techniques based
on differential properties have been published [Sorkine et al. 2004;
Botsch and Kobbelt 2004a; Yu et al. 2004]. They represent the

differential properties of a given surface as a linear system and de-
form the surface so that the differential properties are preserved. In
the typical mesh editing technique, the user first selects the fixed
region, which remains unchanged, and the handle region, which
is used as the manipulation handle, and interactively deforms the
shape by dragging the handle in the screen.

Our motivation for studying interactive deformation stems from re-
quirements for the deformation of automobile sheet metal panels.
In sheet metal panels, some curves and surfaces are often required
to keep their original types, such as circles and cylinders, for man-
ufacturing and assembly reasons. Such partial regions are called
form featuresin product design. Sheet metal parts typically consist
of the combination of free-form surfaces and form-features, each
of which have different characteristics; while free-form surfaces
are characterized by the distribution of curvature, form-features are
defined by surface types and their parameters[Fontana et al. 1999;
Cavendish 1995].

Therefore, it is required for engineering design to maintain the cur-
vature of surfaces and the shapes of form-features.

In this paper, when constraints are approximately satisfied in the
least squares sense, we call themsoft constraints, and when con-
straints are precisely satisfied, we call themhard constraints. In
typical shape design, while differential properties are not explic-
itly specified by the user, the surface types and their parameters are
directly specified according to engineering requirements. It is obvi-
ously reasonable to treat differential properties as soft constraints,
and user-defined constraints as hard constraints.

However, existing methods do not allow the combination of hard
and soft constraints. They solve all constraints using the least-
squares method and produce compromised solutions, which are not
accepted in engineering sense. It is possible to put large weights
on certain constraints, but it is difficult to predict weight values
that satisfy the allowable margin of error, especially when dif-
ferential properties are represented using the cotangent weighting
method[Meyer et al. 2003], which approximates the mean curva-
ture very well.

In this paper, we propose a novel mesh-editing framework that can
manage form-features using hard constraints. Our main contribu-
tion in this paper is as follows:

• a mesh deformation framework in which hard and soft con-
straints are incoeporated;

• a new rotation method for normals based on the logarithms of
quaternions;

• the introduction of new constraints for translating and rotating
form-features while preserving their original shapes; and

• the introduction of new constraints for maintaining the motion
of form-features on a straight line or a plane.

In the following section, we review the related work on mesh edit-
ing. In Section 3, we describe our mesh deformation framework,
in which hard constraints are incorporated using Lagrange multi-
pliers and a new rotation method is introduced based on quaternion
logarithms. In Section 4, we introduce a method for preserving
form-features by constraining the relative positions and rotations of



vertices, and then propose new feature constraints which maintain
the motion of a form-feature on a line or a plane. We also show
a simple feature extraction method. In Section 5, we evaluate our
framework and show experimental results. We conclude the paper
in Section 6.

2 Related Work

Interactive mesh-editing techniques have been intensively studied.
Such research aims to develop modeling tools that intuitively mod-
ify free-form surfaces while preserving the details of shapes. There
are several types of approach for mesh editing, which are based on
space deformation (FFD), multiresolution, and partial differential
equations (PDE).

FFD is very popular in computer graphics. Such methods modify
shapes by deforming 3D space in which objects lie [Sederberg and
Parry 1986; Coquillart 1990; MacCracken and Joy 1996; Hu et al.
2001b]. Cavendish [Cavendish 1995] discussed FFD approaches
in the context of design support and described that FFD could be
used for designing automotive sheet metal panels. We also aim
at supporting the design of automotive sheet metal panels, but in
our empirical investigation of automobile industry, problems arise
when form-features in a 3D model are modified in unintended ways.
It is difficult for FFD approaches to manage constraints on form-
features, because the manipulation handles do not work directly on
geometric shapes.

Multiresolution approaches [Eck et al. 1995; Zorin et al. 1997;
Kobbelt et al. 1998; Guskov et al. 1999; Lee 1999] decompose
a surface into a base mesh and several levels of details, each of
which is represented as the difference between successive resolu-
tion levels. A shape is globally deformed at low resolution and
locally deformed at high resolution. Botsch and Kobbelt [Botsch
and Kobbelt 2004a] applied this technique to interactive mesh edit-
ing. A mesh model is decomposed into two-level resolutions and
the smooth base is interactively deformed using energy minimiza-
tion techniques. Geometric details are then recovered on the modi-
fied smooth shape. However, it is difficult to control the shapes of
form-features precisely in a multiresolution framework.

PDE-based approaches directly deform the original mesh based on
geometric constraints. These methods are categorized as non-linear
and linear methods. Non-linear methods typically solve Laplacian
or Poisson equations using non-linear iterative solvers [Bloor and
Wilson 1990; Schneider and Kobbelt 2000; Desbrun et al. 1999;
Yamada et al. 1999; Taubin 1995]. Catalano et al. [Catalao et al.
2002] investigated support tools for aesthetic design and showed
non-linear PDE approaches are popular in computer-aided design.
These methods produce fair surfaces, but it is time-consuming and
difficult to deform shapes interactively.

We believe that linear PDE-based approaches are also useful for
product design when product shapes undergo frequent design modi-
fications. Linear PDE-based approaches represent differential prop-
erties and vertex positions in a linear system. Discrete Laplacian
operators are often used to represent differential properties [Sorkine
et al. 2004; Botsch and Kobbelt 2004a]. Yu et al. [Yu et al. 2004]
introduced a similar technique called Poisson editing, which manip-
ulates the gradients of the coordinate functions of the mesh. Zhou
et al. [Zhou et al. 2005] proposed volumetric Laplacian operators
for large deformations.

A discrete Laplacian operator on a mesh is defined as the difference
vector between a vertex position and the weighted average position
of its one-ring neighbors. Since Laplacians are defined in the local

coordinate systems[Alexa 2003; Sorkine et al. 2004], one or more
vertices must be specified in the global coordinate system to de-
termine all vertex positions. When each vertex is constrained by
the differential property, additional constraints for vertex positions
lead to over-constraint situations. In existing methods, the least
squares method is typically used for calculating compromised so-
lutions. When Laplacians and positional constraints are described
as linear systemMx = b, the least squares system is represented
asMtMx = Mtb, and therefore vertex positions are calculated by
x = (MtM)−1Mtb. SinceMtM is a sparse symmetrical positive
definite matrix, it can be efficiently factorized[Botsch et al. 2005].
After the matrix is factorized once,x is interactively calculated ac-
cording to the modification ofb.

On the other hand, Welch and Witkin[Welch and Witkin 1992]
introduced the combination of soft and hard constraints in varia-
tional surface modeling and solved them using Lagrange multipli-
ers, although they did not apply them for interactive mesh editing.
Yoshioka et al. [Yoshioka et al. 2006] solved hard constraints us-
ing equality-constrainted least sqyares. This method is very effec-
tive when constraints are restricted to simple positional constraints.
However, it is not useful for form-feature constraints, because a
large number of hard constraints with two or more variables make
an equality-constrained least squares system less sparse. In this pa-
per, we introduce hard constraints and new form-feature constraints
for interactive mesh editing and solve them using the Lagrange mul-
tiplier.

Several authors have discussed methods for rotating the Laplacian
vectors following the deformation of surfaces. Since the rotation
is applied tob on the right-hand side of the least squares system,
Laplacian vectors are rotated in an interactive way. Lipman et al.
[Lipman et al. 2004] estimated the local rotations on the underly-
ing smooth surface. Sorkine et al. [Sorkine et al. 2004] linearized
elements in a rotation matrix assuming that rotation angles are very
small and solved them as a linear system. Lipman et al. [Lipman
et al. 2005] encoded rotations and positions using relative positions
on local frames and solved them as two separate linear systems.
Zayer et al. [Zayer et al. 2005] rotated Laplacian vectors using
harmonic functions in[0,1] based on discrete Laplace-Beltrami op-
erators. They defined a unit quaternion at each vertex and inter-
polated four components of unit quaternions by assigning a sin-
gle weight1.0 to all handle vertices. Our approach is similar to
Zeyer’s method, although we incorporate constraints for the rota-
tions of form-features and assign the logarithms of multiple unit
quaternions for handle vertices.

3 Framework for Constrained Deformation

3.1 Constraints on positions

Let the meshM be a pair(K,P), whereP = {p1, . . . ,pn} andpi =
(xi ,yi ,zi) ∈ R3; K is a simplicial complex that contains verticesi,
edges(i, j), and faces(i, j,k). The adjacent vertices of vertexi are
denoted byN(i) = { j|(i, j) ∈ K}. The original position ofpi is
referred to asp0

i = (x0
i ,y

0
i ,z

0
i ).

When the normal vector and mean curvature of vertexi are referred
to asκi andni , the mean curvature vectorκini can be approximated
using the following discrete form [Meyer et al. 2003];

κini = L(pi) =
1

4Ai
∑

j∈N(i)
(cotαi j +cotβi j )(pi −p j ), (1)

whereαi j andβi j are the two angles opposite to the edge in the two



Figure 1: Definition ofαi j andβi j .

triangles that share edge(i, j), as shown in Figure 1. We denote the
mean curvature vectors of the original mesh asδi(i = 1,2, . . . ,n).

In this paper, we describe additional constraints other than mean
curvature vectors asf j (P j ) = u j (P j ⊂ P). Then constraints for
vertices can be described as the following linear equations:{

L(pi) = R(ni ,θi)δi (i = 1,2, . . . ,n)
f j (P j ) = R(m j ,φ j )u j ( j = 1,2, . . . ,m),

(2)

wheren is the number of vertices;m is the number of additional
constraints;R(n,θ) represents a rotation matrix that rotates a vector
around axisn ∈ R3 by angleθ ∈ R. R(ni ,θi) andR(m j ,φ j ) are
calculated before Equation 2 is solved. We will describe a method
for calculating rotation matrices in the next section.

Since the number of constraints in Equation 2 is larger than the
one of variables, the exact solution does not exist. Therefore, we
classify constraints in Equation 2 into soft and hard constraints, be-
cause the positional constraints need to be satisfied as precisely as
possible in most engineering applications.

When we represent soft constraints asAx = b and hard constraints
asCx = d in matrix forms, variablesx that minimizes||Ax−b||2
subject toCx = d can be calculated using the Lagrange multiplier
as:

min
x

(
1
2
||Ax−b||2 +yt(Cx−d)), (3)

wherey = (y1,y2, . . . ,ym)t are Lagrange multipliers. This mini-
mization can be calculated using the following linear system:

Mx̃ = b̃ (4)

M =
(

AtA Ct

C 0

)
, x̃ =

(
x
y

)
, b̃ =

(
Atb
d

)
This linear system determines the unique solution that satisfies hard
constraints exactly. MatrixM can be factorized using sparse direct
solvers for linear symmetric systems[Gould et al. 2005].

We will note that when conflicting or redundant constraints are in-
volved in a linear system, they lead to the rank deficiency, and
the solver may halt the computation. We can resolve such over-
constraint problems by applying Householder factorization to each
column in matrixC, as shown in [Yoshioka et al. 2006]. If col-
umn j in CT is a redundant constraint, the diagonal and lower ele-
ments of columnj are equal to zero after the previousj−1 columns
are processed. Therefore, we can detect the redundant constraints.
This process can be calculated very efficiently. See [Yoshioka et al.
2006] for more detail.

Figure 2: Deformation using rotated mean curvature vectors. Left:
original shape; right: deformed shape.

3.2 Constraints on rotations

In this section, we describe how to calculateR(ni ,θi) in Equation
2.

In our framework, we assign the logarithms of unit quaternions to
all vertices. A quaternion can be written in the form:

Q = (w,x,y,z) = w+xi +yj +zk, (5)

wherew,x,y,z∈R andi, j ,k are distinct imaginary numbers. When
a quaternion has unit magnitude, it is called a unit quaternion and
corresponds to a unique rotation matrix. A unit quaternion can be
represented using rotation axisn̂ and rotation angleθ :

Q̂ = en̂ θ
2 = cos

θ
2

+ n̂sin
θ
2

, (6)

wheren̂ is a pure quaternion. The logarithm of a unit quaternion is
defined as the inverse of the exponential:

q = lnQ̂ =
θ
2

n̂. (7)

We assign logarithmqi ∈ R3 to vertexi and denote the logarithms
assigned to all vertices asQ = {q1,q2, . . . ,qn}. Whenqi is equal
to 0, the mean curvature vector is not rotated; whenqi = v j is spec-
ified, the mean curvature vector is rotated around axisv j/|v j | by
angle2|v j |.

Shoemake [Shoemake 1985] proposed the spherical linear inter-
polation between two unit quaternions. Johnson[Johnson 2003]
applied the spherical linear interpolation to multiple unit quater-
nions using the logarithms of unit quaternions. Pinkall and Polthier
[Pinkall and Polthier 1993] proposed an interpolation technique us-
ing discrete conformal mapping. Zayer et al. [Zayer et al. 2005]
applied discrete conformal mapping for interpolating unit quater-
nions. We introduce similar constraints on the logarithms of unit
quaternions:

L(qi) =
1

4Ai
∑

j∈N(i)
(cotαi j +cotβi j )(qi −q j ) = 0. (8)

Then we introduce additional linear equations other than Equation
8, and describe them as:

g j (Q j ) = v j (Q j ⊂ Q,v j ∈ R3). (9)

As a result, linear equations for rotations can be described as:{
L(qi) = 0 (i = 1,2, . . . ,n)
g j (Q j ) = v j ( j = 1,2, . . . , r),

(10)



wheren is the number of vertices;r is the number of additional
constraints on rotations. These equations construct a sparse linear
system and can be solved using sparse direct solvers[Gould et al.
2005]. The solution of the linear system generates certain energy-
minimization surfaces [Pinkall and Polthier 1993] in three dimen-
sional space spanned by the logarithms of unit quaternions.

When all components ofQ are calculated, rotation matrix
R(qi/|qi |,2|qi |) is uniquely determined at each vertex. Figure 2
is an example of a deformed shape, in which the mean curvature
vectors are rotated.

4 Preserving Form-Features

4.1 Preserving the shape of form-feature

We define a form-feature as a partial shape that has an engineering
meaning, such as a hole and a protrusion. In mesh modelM, a
form-feature consists of a subset of verticesP. In this section, we
denote a form-feature asf , the index set of vertices in form-feature
f asΛ f .

When form-featuref is translated and rotated according to the mo-
tion of handles while preserving its original shape, the following
constrains regarding rotations and positions maintain the shape of
the form-feature:{

qi −q j = 0 (i, j ∈ Λ f ;(i, j) ∈ K)

pi −p j = sf R(ni ,θi)(p0
i −p0

j ) (i, j ∈ Λ f ;(i, j) ∈ K),
(11)

wheresf is a scaling factor. These equations are added to Equa-
tion 2 and 10. Since each vertex in the form-feature has the same
rotation matrix,ni = n j andθi = θ j (i, j ∈ Λ f ) in Equation 11.

In some cases, a form-feature has to keep the original direction de-
pending on design intent. Then the following equations are added
to Equation 2 and 10 instead of Equation 11:{

qi = 0 (i ∈ Λ f )

pi −p j = sf (p0
i −p0

j ) (i, j ∈ Λ f ;(i, j) ∈ K),
(12)

Figure 3 shows deformed shapes that preserve the shapes of holes
as circles. As shown in Figure 3c-e, constraints on relative positions
maintain the shapes of form-features. In Figure 3e, four small holes
are constrained by Equation 11, but the center hole is constrained
to preserve the original direction using Equation 12.

4.2 Constraining the motion of form-feature

In computer-aided design, it is useful to constrain the motion of a
form-feature. The positions of cylindrical form-features are often
specified using the center lines, and the positions of planar faces
are often constrained on a specified plane.

In linear constraints, the motion of a form-feature can be maintained
on a straight line or a plane by constraining a point in the form-
feature. A constrained point can be specified as a linear function
of vertex positions in the form-feature. For example, the center
position of a circle can be specified as function0.5(pi +p j ) using
two vertex positions on the opposite sides.

Here, we generally represent a linear combination of vertex posi-
tions asx = (x,y,z), where each ofx, y andz is a linear function of
coordinates{pi}(i ∈ Λ f ), respectively.

4.2.1 On-plane constraints

Figure 4: (a) Deformed shapes with a form-feature that moves on
a plane. (b) Deformed shapes with a form-feature that moves on a
line. (c) Deformed shapes with a rotated form-feature that moves
on a line.

A plane is uniquely determined by its normal vector and a point on
the plane. We represent the equation of a plane asn(x− p) = 0,
wheren = (nx,ny,nz) is the normal vector andp = (px, py, pz) is
a point on the plane. Then the following equation constrains the
motion of a form-feature on a plane:

nxx+nyy+nzz= nxpx +nypy +nzpz (13)

Since positionp appears on the right-hand side of Equation 13,
planes can be interactively moved to their normal directions. This
capability is useful for the modification of an allowable margin to
avoid interference.

Figure 4a shows deformed shapes in which a hole feature is con-
strained to preserve the shape with no rotations and to move on a



Figure 3: Constrained deformation. (a) Original shape; (b) deformed shape with no form-feature constraints; (c) stretched while preserving
the shapes of circles; (d) deformed shape with five rotated circles; and (e) deformed while preserving the direction of the center circle.

plane.

4.2.2 On-line constraints

A straight line can be represented asx = kn+p. Let l, m andn be
unit vectors that are perpendicular each other. Then position(x,y,z)
moves on the straight line by using the following constraints:{

lxx+ lyy+ lzz= lxpx + lypy + lzpz

mxx+myy+mzz= mxpx +mypy +mzpz
(14)

Straight lines can be moved interactively to directions that are per-
pendicular ton. This capability is also useful, because it corre-
sponds to the movement of the center positions of circles on 2D
drawings.

Figure 4b-c show the constrained motion of a form-feature. The
form-feature is constrained to preserve the direction in Figure 4b
and to rotate in Figure 4c while moving on a straight line.

4.3 Feature extraction

In our system, the user first selects the region of a form-feature, and
then adds linear constraints to the form-feature. It may be tedious
work for the user to carefully select the region before specifying
constraints. We introduce an interactive mesh segmentation tech-
nique for easy selection of feature regions.

So far, many algorithms have been reported for the segmentation of
feature regions [Mangan and Whitaker 1999; Chazelle et al. 1997;
Shlafman et al. 2002; Katz and Tal 2003; Katz et al. 2005]. Our
segmentation algorithm is based on the method proposed by Katz
et al. [Katz and Tal 2003], but we apply the method only to user-
specified regions.

Figure 5 shows a feature extraction process. First, the user selects
a region that includes the boundary of the feature region, as shown
in Figure 5b. The region must be selected so that the mesh model
is separated into exactly two regions. Then the optimal cut-set is
calculated by the maximum flow, minimum cut algorithm. Finally,
the feature region is separated, as shown in Figure 5c.

Figure 5: Feature extraction. (a) Original shape; (b) The region
selected by the user; (c) The extracted region.



5 Experimental Results

Figure 6 shows examples of deformed shapes. In industrial design,
character lines are essentially important. If a deformation process
modifies the character lines of a product shape, the resultant shape
is not accepted by designers. While the character lines are warped
in Figure 6a, they are maintained in Figure 6b by defining con-
straints on the character lines.

Figure 7 shows a front grill part of an automobile model. While no
form-feature constraints were specified in Figure7b, form-feature
constraints are defined at cavities in Figure 7c so that the shapes and
directions of form-features are preserved. Deformation in Figure 7b
destroys the design intent, but Figure 7c maintains the characteristic
features. In Figure 7d, scaling factors in Equation 12 are modified
in an interactive manner.

Figure 8 is a sheet metal panel. 16 cavities shown by arrows are
constrained so that they rotate while preserving the original shapes
of cavities.

Table 1 shows CPU time for calculating the deformed models in
Figure 6-8. The CPU time was measured for setting up matrices and
factorizing them on a PC with 1.50-GHz Pentium-M and 1 GB of
RAM. Once the matrix was set up and factorized, the shape could be
deformed in interactive rate. This result shows that the performance
of our framework is good for practical use.

Figure 6: Door panel. (a) Shape deformed without form-feature
constraints. The character lines are warped. (b) Shape deformed
with form-feature constraints on character lines.

Figure 7: Front grill. (a) Original shape. (b) Shape deformed with-
out form-feature constraints. (c) Shape deformed with form-feature
constraints. (d) Interactive scaling of form-features.

Vert Soft Hard Feat Time
Figure 7 3337 5796 3826 3702 0.86
Figure 8 13974 25458 9334 1072 4.69
Figure 9 2982 6084 3308 3202 0.99

Table 1: CPU time for computation. [Vert]: number of vertices;
[Soft]: number of soft constraints; [Hard]: number of hard con-
straints; [Feat]: number of form-feature constraints; [Time]: CPU
time(sec).



Figure 8: Sheet metal part. Top: original planer shape. Bottom:
deformed shape with rotated form-features shown by arrows.

6 Conclusions and Future Work

We have presented a discrete framework for incorporating con-
straints for form-features using hard constraints. Deformed shapes
are calculated so that constraints on rotations and positions are sat-
isfied. Constraints on rotations and positions are separately solved
as two sparse symmetrical matrices, which are known for the exis-
tence of efficient solvers. We showed how to constrain the shape
and motion of form-features; linear shape constraints can constrain
the shapes of form-features to the same shape and linear motion
constraints confine motion to movement on a plane or a straight
line. These constraints are convenient for deforming the 3D models
of sheet metal panels.

In future work, it will be important to develop more intuitive tools
for specifying form-features and constraints on mesh models. Since
a complex product shape contains a considerable number of form-
features, the automatic detection of features is preferable. In addi-
tion, it will be useful to incorporate a geometric reasoning engine
into our framework, since commercial geometric engines are avail-
able and widely used. Well-known problems on hard constraints
include the management of inconsistent and redundant constraints.
Since we have developed a mechanism for resolving such con-
straints, we will incorporate it into our framework.
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