レーザ計測データに基づく形状再構成技術

タイトルカットが 入ります

正会員 増田 宏*1

1. はじめに

近年,測量分野のレーザスキャナの計測速度と点 群密度が飛躍的に向上した結果,大型構造物,市街 地,生産設備,交通網などを計測して,実物に即し た3次元モデリングを行う手法が検討されるように なってきた.

大型構造物や設備の迅速な現況把握と改修・更新 は多くの企業において重要な課題となっている.そ うした作業を短期間・低コストで行うためには、アズ ビルトモデリングが有効である.アズビルトモデリ ングとは、既存の大型設備の3次元計測に基づいて 3次元 CAD データを作成する技術の総称である. モデルベースで作業工程、干渉、改修部品の検討を 行った後に実作業を行えれば、作業が短期間で確実 に行え、設備の停止期間も短縮することができる.

しかしながら、レーザスキャナを利用した工業設備の3次元形状再構成は容易ではなく、以下のような問題が存在する.

(1) 膨大な点群:最近の位相差方式レーザスキャ ナでは、数千万の点群を数分で取得できる. 複数回 計測した点群を併合するため、点の個数が数億点に なることも普通である. この規模の点群処理を効率 的に行う手法が求められている.

(2) 異常値処理:レーザ計測によって得られたデ ータには,異常値が混入している.異常値とは,正 規分布から大きく離れた誤差を持つ計測データであ る.特に物体の境界付近でレーザのスポット光が分 断されたときに異常値が大量に発生し,物体が存在 しない部分にも点群が観測される現象が発生する. データ処理においては,異常値の影響を受けにくい 手法が必要となる.

(3) 不完全なデータ:大型設備は多数の部材によって構成されている. そのため,他の部材に隠され

て部分的に欠落した点群データしか得られないこと も一般的であり、そうした不完全なデータに対応で きる手法が必要となる.

(4)応用分野の多様性:レーザ計測が活用できる 業界は広いが,業界ごとにニーズが異なっている. 機械設計支援,コンピュータグラフィックス,ロボ ットの視覚認識,測量の分野では,レーザ計測デー タの処理技術の蓄積が豊富であり,独自のニーズに 対応できるが,それ以外の新しい応用領域に関して は十分なスキルが乏しいのが実情である.工業的な 応用をカバーできる包括的な技術基盤の確立や人材 育成が必要である.

本稿では、こうした状況も踏まえながら、レーザ 計測データを用いた形状再構成について解説する.

2. レーザ計測データの特徴

ー回のレーザ計測で得られた点群の座標は,計測 装置を原点とした座標系で記述されている. レーザ スキャナでは,図1に示すように,方位角 と仰角 に よってレーザの照射方向が決められる. 座標は照射 方向と対象物までの距離によって計算される.

(a)レーザスキャナ
(b) 球面座標
図1 レーザスキャナと球面座標系

また,計測時に座標とともにレーザ反射強度が得られる.この値を [0,255] に正規化することで明暗 画像を生成できる.図2は,照射されたレーザの照 射方向の反射強度を球面上に表示したものである.

^{*1} 所属 東京大学大学院工学系研究科システム創成学専攻 *2 所属

点群全体を概観するために,球面を平面に展開す るメルカトル図法(図3)が多くの点群処理システ ムで標準的に用いられている.ただし,メルカトル 図法は全方位を表示するには適しているが,極に近 づくほど大きく歪む.メルカトル図を透視投影図に 変換すれば自然な画像が得られるが,描画できる範 囲は限定される(図4).これら二通りの描画方法は, 状況に応じて使い分けられる.

すなわち、中・長距離のレーザ計測で取得された 点群は、図3に示した画像の画素に対応付けて保持 できる.このような整列した点群を距離画像と呼ぶ. 距離画像では、整列していない点群の処理よりも処 理が単純化できることが多いが、工業設備の特有の 問題もあり、技術の普及のためには解決すべき問題 が多い.

図2 球面に投影された画像

図3 点群全体のメルカトル画像

(a) メルカトル画像

(b) 透視投影画像図4 透視投影画像への変換

3. 曲面抽出

大型構造物や工業設備では、平面や円柱など単純な面から構成される規格品が多い. そのため、形状再構成においては、幾何曲面の算出が重要である.

3.1 曲面フィッティング

多数の点の座標が与えられたときに、それらに当ては まる曲面式を求める問題を考える. たとえば、点群があ る 平 面 上 に 乗 っ て い る と す る . 平 面 式 を ax+by+cz-d=0 (ただし、 $a^2+b^2+c^2=1$)とする と、平面計算では係数a,b,c,dの値が算出できればよい.

簡単に考えると,最小2乗法を用いて,残差の2乗和

$$\sum (a x_i + b y_i + c z_i - d)^2$$
 (1)

を最小化すればよいように思えるが、実際の計測点による計算では、正しく求まらないことがしばしばある.これは、レーザ計測で得られた点群に異常値が含まれるためである.最小2乗法は、異常値に弱いことが知られている.残差の大きい異常値を2乗すると、その値が全体に大きな影響を与えるからである.この問題に対処するためには、前処理として異常値を除去するか、異常値に影響されにくいロバスト推定を用いる必要がある

ロバスト推定では、ローレンツ分布やTukey バイウェ イト法などが知られている.たとえば、ローレンツ分布 に基づく方法では、式(1)の代わりに

$$\sum \log \{1 + (a x_i + b y_i + c z_i - d)^2\}$$
(2)

を最小化する.式(1) も式(2) も残差を小さくする解を算 出することに変わりなく,似たような解になるように見 える.しかし,式(2) では異常値の寄与が小さくなり, 実質的に異常値の影響をほとんど受けない.異常値が除 去できないときは,こうしたロバスト推定を用いる必要 がある.

工業設備の点群においては、平面、球面、円柱、円錐、 トーラスが多く出現する.これらの曲面に関しても、点

(x_i, y_i, z_i)の残差が計算できれば,式(1)または(2)を用いて

曲面式を計算できる.これらの曲面式の計算法について は、参考文献[1] に詳しく示されている

3.2 領域成長法

領域成長法は、点群データから、ある曲面式を満たす 領域を検出するための手法である.

図5に領域成長法の例を示す.まず,ユーザの選択等 によって適当な点群を選び、シード領域とする.また、 シード領域の点を用いて、曲面式の計算を行う.次に、 シード領域の近くにある点を調べ、それらが曲面上に乗 っていれば、領域に加えて範囲を拡張する.この処理を 点が追加できなくなるまで続ける.その結果、図5に示 すような円柱領域や平面領域が検出できる.

シード領域

検出領域

図5 領域成長法による曲面抽出

なお、領域成長法は高速であるが、大きなノイズがあ ると領域が十分に成長しない.そのため、ノイズが大き い場合には事前に文献[2] に示すような平滑化処理が必 要となる.

3.3 RANSAC法

点群からの幾何曲面検出には、RANSAC 法もよく用い られる. この手法は、点群にさまざまな曲面が混在する ときに有効である.

ここでは, N 個の点群から未知の平面を見つけ出す問題を考える. RANSAC 法では, 平面は以下の手順で計算される.

(1) 平面は3 点あれば一意に確定するので、N 個の点から3 個をランダムに取って、その3 点から平面式を計算する.

(2) N 個の点のうち, (1) で計算された平面からの距離 が閾値 δ 以内の点の個数を数える.

(3) 上記の (1)(2) の手順を多数回繰り返し, 点の個数 が最も多くなる平面式を採用する.

平面以外の曲面式についても同様で、少数の点から曲 面式を計算し、点が最も多く乗っている曲面式を採用す ることで曲面抽出が行える[3].

なお、RANSAC法は、異常値の多い点群からでも幾何 曲面が検出できるという利点がある.しかし、大規模点 群にそのまま適用すると、十分な確率で曲面検出を行う のに非常に多くの試行が必要となり、実用的な時間で解 が算出できないという問題が起こる.RANSAC法を適切 に用いるには、全体を小領域に分割するなど、試行回数 を少なくするための工夫が必須である.

3.2. 曲面の自動検出

点群から曲面を自動的に抽出する問題においては、領 域成長法, RANSAC法のどちらの方法も用いられている.

領域成長法では、シード領域をランダムに選択し、+ 分大きな領域に成長したらそれを解とする. RANSAC 法 では、全体を適当な大きさの領域に分割し、それぞれに 対してランダムサンプリングにより曲面式を求める.

図6に発電プラントを計測した約5000万点から,円柱 と平面を自動抽出した例を示す.約1500個の平面と500 個の円柱が抽出できている.我々のシステムでは,計算 時間は15分程度であった.

(a) 円柱の抽出

図 6. 曲面自動抽出

4. インタラクティブモデリング

4.1 インタラクティブ処理の必要性

自動抽出によってある程度の曲面抽出は行えるが, 未検出や誤検出が避けられない.また,他の部材に隠 されてレーザ光が照射できない箇所では欠落が起こる. その場合,図7のように,面が複雑に分断されるので, これらを統合して元の形状を復元しなければならない.

形状再構成を確実に行うには、自動処理では限界があ る.人が指示しながら形状モデリングを行わなければな らない部分が残るため、人と計算機が強調しながら操作 できる環境が必要となる.

そこで、我々は、点群から生成された画像をインタフ ェースとして用いた3次元モデリングシステムを構築し た[4]. このシステムでは、3次元の点群と2次元のデジ タル画像を関連付ける.それにより、作業者が画像を 確認しながら、直感的に操作できるようにする.こ こでは、このシステムについて紹介する.

4.2 画像上でのスケッチによるモデリング

点群処理においては、曲面式は比較的正確に求まるが、 境界エッジを正確に求めることは難しい、境界付近では、 レーザ光のスポット割れが生じやすく、データが不安定 になるためである.

この問題に対処するために,境界の自動抽出はあきらめて,ユーザが画像上にスケッチすることで,曲面領域 を指定することを考える.

図8は、点群、メルカトル画像、透視投影画像の 関係を示している.この図より、透視投影画像上の一 点が決まると、その点と原点を通る直線と曲面との交点 から座標が一意に決まることがわかる.この性質を利用 して、ユーザが画像上で行うスケッチから3次元図形を 作成する.

平面抽出 スケッチ 形状再構成 (a) 円柱形状の再構成

平面抽出 スケッチ 形状再構成
(b) 多角柱形状の再構成
図 9 画面上でのスケッチによる形状再構成

図 9(a)は、平面上のスケッチから円柱モデルを作成した例である.この操作では、まず、円柱上面の平面の方程式を領域成長法で算出する.次に、ユーザが画像上で円弧上の3点を指定する.各点は平面上に乗っていることから、対応する3次元座標が計算でき、これらを通る円として円柱の上面が決定する.円柱の高さは、画像上でマウスをドラッグして決める.

図 9(b) は、断面をスケッチにより指定して、鋼材の形状を再構成した例である.

4.3 フィーチャモデリング

生産設備やプラント設備ではほとんどの構成部材は規 格品であり、JIS 等によって寸法が決められている.従って、ユーザが部材の種類を選択した上でモデリングを 行えば、規格に適合した寸法のソリッドモデルを作成す ることが可能となる.また、規格値がわかっていれば、 曲面抽出の際の変数の個数を減らせるため、計算精度を 向上させることも可能である.

このように、部材の種類をユーザが特定した上でモデ リングを行う手法をフィーチャモデリングと呼ぶ.フィ ーチャモデリングでは、規格などの付随的な情報も利用 しながら形状を決定する.

図 10 に配管のモデリングの例を示す.ユーザは配管 フィーチャを選択してから,曲面抽出を行う.また,画 像に合わせて,円柱の長さを調整する.

このとき,配管の寸法は規格に定められているので, 配管の径は離散的な値しか取ることができない.そのよ うな場合には、得られた曲面に最も近い寸法値を規格表から選択して、その値になるように円柱を再計算する.

図10 配管フィーチャの作成

JIS 規格では、一般構造用炭素鋼鋼管が図 11 ように規 定されており、この表を参照すれば、図 10 の円柱の場合 には、最も近い値として 89.1 mm が選択される. 円柱の 未知数は5 個であるが、径が決まれば4変数になるので、 円柱の軸を再計算して計算精度を高めることができる.

設備のモデリングでは、部材の接続関係から形状が決定する場合も多い.図12そのような部材を示している. これらのエルボ、フランジ、突合せ、レジューサでは、 接続する配管の径が決まれば寸法が確定する.したがって、これらの部材については、接続する配管を指定すれば自動的に形状が決められる.

我々のシステムでは、断面スケッチからの形状再 構成と、規格部品のためのフィーチャが用意されて いる.図 13 は、それらを用いてモデリングを行っ た例である.いずれの部品も画像上での簡単なマウ ス操作で現物に忠実なモデルが作成できている.

4. おわりに

本稿では、レーザ計測データに基づく形状再構成に ついて解説を行った.レーザ計測装置が安価になっ てきたせいもあると思われるが、最近になって興味 を持つ企業が増えてきている.

筆者は、大規模構造物や設備の形状再構成技術の 研究を行っており、また「サイバーフィールド構築 技術研究分科会」を運営して産業界への啓蒙活動を 行ってきた. 2012 年 3 月からは、規模を拡大して、

「大規模環境の3次元計測と認識モデル化技術専門 委員会」へと改組する.興味を持たれた方は,HP を参照いただければ幸いである.

(a) エルボ

(c) ティー
(d) レジューサ
図 12 規格部品の形状再構成

参考文献

 Lukacs, G.; Marshall, A.D.; Martin, R.R.: Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. Proceedings, 5th European Conference on Computer Vision, pp. 671–686, 1998.

- 増田宏,村上健治,大規模点群データの平滑化手法 に関する研究:ロバスト推定に基づく平滑化手法, 精密工学会誌,76(5), pp.582-586, 2010.
- Schnabel, R.; Wahl, R.; Klein, R.: Efficient RANSAC for Point-Cloud Shape Detection, Computer Graphics Forum, 26(2), 2007, 214-226.
- 増田宏,画像インタフェースを用いた大規模点群 からのソリッドモデリングシステム,機械学会論 文集(C編),76巻771号C編,pp.2748-2752, 2010.