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Abstract

The control meshes of Doo-Sabin and Catmull-Clark
subdivision surfaces are usually refined uniformly using a
technique called knot-doubling. This uniform refinement
approach would perform unnecessary subdivision steps on
regions already close to the limit surface enough and, con-
sequently, cause unnecessary (exponential) increase on the
number of polygons in the refined meshes. This paper over-
comes this problem by proposing a local refinement tech-
nique for the control meshes of Doo-Sabin and Catmull-
Clark subdivision surfaces. Local refinement is achieved by
selectively inserting new knots at midpoints of knot spac-
ings, as for the non-uniform recursive subdivision surfaces
(NURSS). Efficient adaptive subdivision can be easily real-
ized based on the new technique.
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1. Introduction

Subdivision surfaces are powerful tools for graphical
modeling and animation because of their scalability, numer-
ical stability, simplicity in coding and, especially, their abil-
ity to represent complex shapes of arbitrary topology. They
have already been used to represent free-form surfaces in
several commercial systems. Doo-Sabin and Catmull-Clark
subdivision surfaces are two of the most popular subdivi-
sion schemes. These subdivision surfaces are based on uni-
form tensor product B-spline surfaces, whose non-uniform
rational extension (NURBS) is an industry standard in com-
puter graphics as well as CAD/CAM systems.

A subdivision surface is the limit surface of a sequence
of meshes generated by iteratively refining a given control
mesh. The refining process is usually performed uniformly
on all the faces of the current mesh using a technique called
knot-doubling. This uniform subdivision approach would
perform unnecessary subdivision steps on regions that are
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already flat enough and, consequently, cause unnecessary
(exponential) increase on the number of faces in the result-
ing mesh.

In this paper, a technique to solve the above problem
is proposed. The technique performs local refinement of
a subdivision surface by selectively inserting knots at mid-
points of knot spacings. The new technique is named SNUS
for selective non-uniform subdivision because the selective
knot insertion process is similar to that of non-uniform re-
cursive subdivision surfaces (NURSS) [10], which gener-
alize non-uniform tensor product B-spline surfaces to ar-
bitrary topology by assigning knot spacings to vertices or
edges of the control meshes. Efficient adaptive subdivision
can be easily realized based on the new technique as shown
in the paper.

The remainder of this paper is organized as follows.
Related works in adaptive subdivision for subdivision and
parametric surfaces are presented in Section 2. Selective
non-uniform subdivision techniques for curves and surfaces
are given in Sections 3 and 4, respectively. Concluding re-
marks and future research directions are given in Section
5.

2 Related work

Subdivision defines smooth surfaces as the limit of a se-
quence of the refinement of polygonal meshes. For regu-
lar patches, this sequence can be defined by knot insertion
[2, 3, 9]. The Oslo algorithm is well known for the knot
insertion scheme for univariate B-splines [3]. Given a set of
knots and control points, a function is constructed by con-
trol points with breakpoints at the knots. When a new knot
is inserted in a knot sequence, the knot insertion scheme
updates neighbor control points for representing the same
function.

Early subdivision schemes were designed for generaliz-
ing this knot insertion scheme to irregular meshes [5, 1, 7].
Since knot intervals were uniformly determined, knots were
not represented explicitly. In this meaning, these schemes



can be said special cases of knot insertion, in which knots
are inserted uniformly at the midpoints of the knot intervals
and the number of knots is doubled during each insertion
step.

As a subdivision scheme that allows non-uniform knot
intervals, Sederberg et al.[10] proposed non-uniform recur-
sive subdivision surfaces (NURSS). They showed that non-
uniform knot intervals could be used for controlling the
limit surfaces with creases. However, their scheme was
still based on knot-doubling, and non-uniform knot inter-
vals were not discussed as a means of adaptive subdivision.

Adaptive subdivision for irregular meshes is one of the
future research trends [12]. We believe that knot insertion
is one of the most promising schemes for adaptive subdivi-
sion.

Another type of approach to adaptive subdivision is to
construct schemes that allow for smooth transitions between
uniform meshes of different levels. Zorin et al.[13] main-
tained control points of each subdivision step using hier-
archical structures, and realized multiresolution editing of
hierarchical meshes . He also described variations of adap-
tive subdivision using the similar approach [14]. Kobbelt
[6] and Velho et al. [11] subdivide only locally specified
portions of a uniform mesh to adaptive refine areas of inter-
est. However these approaches do not have the piecewise
functional representations that makes analyzing B-splines
easier[12].

3. Curve SNUS

3.1. Curve Knot-Doubling

The control polygon of a periodic B-spline subdivision
curve is refined by repetitive knot-doubling. Knot-doubling
here refers to the process of inserting a new knot at the mid-
point of each current knot interval[10]. This process dou-
bles the number of control points that represents the same
curve. For a non-uniform quadratic periodic B-spline curve,
each vertex of the control polygon corresponds to a single
quadratic curve segment and a knot interval d; is assigned
to each control vertex P;. A knot-doubling process in this
case generates the following new control points @,

Q, = (di +2dig1)P; + d;i Py

’ 2(d; + diy1)
dig1 Py + (2d; + dip1)Piga
2(d; + diy1)

)

Q2i+1 = (2)

as shown in Figure 1(a).
For a periodic cubic B-spline curve, each edge of the

control polygon corresponds to a single cubic curve seg-
ment and the knot intervals are assigned to its edges instead

(b) Cubic curve.

Figure 1. Non-uniform B-spline curve.

of its vertices. New control points €, in this case are cal-
culated by
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as illustrated in Figure 1(b).

The above non-selective subdivision scheme by knot-
doubling is problematic where the knot intervals are equal
to 0 or much smaller than the other intervals. For ex-
ample, if one of the knot intervals d; of a quadratic B-
spline curve is equal to 0, Equations (1) and (2) give us
Qs = Q,; = Py, ie., the two consecutive control ver-
tices are identical. This means that the number of control
vertices would increase but the curve would not be refined.
This is the result of inserting a knot into the joint of two
adjacent segments. Further knot-doubling processes there
would actually slow down the convergence to its limit curve
because it would only accumulate control vertices at the
same location. Similar problem would also occur around
vertices whose knot intervals are much smaller than the oth-
ers.

For a cubic curve, the similar accumulation of control
vertices is unavoidable on an edge whose knot interval d; is
equal to 0 or much smaller than the others. Equations (3)



and (4) are simplified as follows when d; = 0:

disiPi+di1Pip

Qaiy1 = (5)
e (di—1 +dit1)
P;+Q,

Q2 % (0)
The above equations tell us that Q4; 1, Q5;, and Q4
are on the same edge and the middle point Q,; does not
contribute to the refinement.

3.2. Selective Knot Insertion

A simple solution to the above problem is not to insert
a knot into the joint of two consecutive segments or into
a small knot interval segment selectively. For a quadratic
curve, you should not ‘cut a corner’ to stop inserting a knot
and it is straightforward to select effective knot insertions
if you have appropriate criteria. The cubic curve case is
slightly more complicated, but still straightforward enough
as is explained below.

As shown in Figure 2, a knot insertion at the midpoint of
the initial knot interval d; of the non-uniform cubic B-spline
curve can be achieved by the following update equations (cf.

[9D:
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A midpoint insertion for the next initial knot interval d;
generates three new control vertices S;, S;11, and S; 0.
Simple algebra shows that they are given by the same equa-
tions as Equations (4), (3), and (9)', respectively. Further
insertions can be performed by applying the updating pro-
cess of the control vertices described by these equations.

Note that Equations (7) and (9) are similar to Equations
(1) and (2) in the sense that the new vertices R;_; and Q,
are moved from the original vertices P; and P, to new
locations on edge P;P; 1. Even though we perform an-
other midpoint insertion for the previous knot interval to
the unsubdivided knot interval in the other direction, shown
in Figure 2 as green line segments, the location of R;_; re-
mains the same. We will use these facts later in the selective
subdivision for Catmull-Clark surfaces.

R;
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4. Surface SNUS

Based on the arguments of the selective subdivision
of the non-uniform B-spline curves, we will develop a

TEquation (9) should be applied for the segment P; P, instead of
P 1P;yo.

PII2

Figure 2. Selective knot insertion.

technique to selectively subdivide Doo-Sabin and Catmull-
Clark surfaces to refine their meshes in this section. Even
though the original surface is a uniform type, the SNUS per-
forms subdivisions as for the non-uniform recursive subdi-
vision surface.

4.1. Doo-Sabin NURSS

The Doo-Sabin NURSS is an extension of the stan-
dard uniform Doo-Sabin subdivision surface and its refine-
ment rules correspond to knot-doubling of bi-quadratic non-
uniform tensor product B-spline surfaces. The surface is
generated from a polyhedral control mesh by successively
cutting off its corners and edges. In the NURSS case, the
knot spacings are supposed to be assigned to the vertices
since the surface is essentially bi-quadratic, but the control
mesh may have vertices whose valence are other than four.
Hence the knot spacings are assigned to half edges.

4.2. Selective Subdivision for Doo-Sabin surface

If the control mesh happens to be a rectangular grid, it
is straightforward to apply the curve selective subdivision
technique to the surface. You should not ‘cut a corner’
where a knot spacing is not necessary to be inserted. By
the selective subdivision, there are four types of the cor-
ner cuttings: 1) cutting in the two parameter directions (the
same as the original), 2) cutting in one parameter direction,
3) cutting in the other parameter direction, 4) no cutting. In
the 2nd case we can compute the new vertices conceptually
by applying Equations (1) and (2) twice in one direction af-
ter the other.

For a face whose valence is not equal to 4, after one it-
eration, the new vertices are classified into 4 types as the
regular grid case as shown in Figure ??. If the two half
edges P;P;_; and P;P;, starting from a vertex P; of
the face should be subdivided, it is regarded as the normal
cutting around the vertex and the position of the new vertex



is computed by Equation (??). If one of them, say P; P;
should not be subdivided, it is treated as the curve selec-
tive subdivision and the vertex is calculated by the equations
corresponding to Equations (1) and (1).

For simplicity, we assume that all vertices have valence
four, which can be achieved through one step of the Doo-
Sabin subdivision. As shown in Figure 3(a), the Doo-Sabin
subdivision generates four new vertices for each old vertex,
one for an adjacent face. We refer to the operation which
splits a vertex into four as a vertex-split operation. New
faces are created using new vertices as shown in the figure.

In the Doo-Sabin subdivision, the positions of new ver-
tices for regular meshes are determined by (9,3,3,1) masks.
Unfortunately, we observed that it was difficult to provide
a uniform subdivision mask that allowed selective subdivi-
sion using only current vertex positions and knot spacings.
Therefore, we simplified the subdivision rule by regarding
every face as a parallelogram. As shown in Figure 4.2(b),
new vertices are created at the midpoint between the cen-
troid of the face and the old positions. In this case, subdivi-
sion masks for regular meshes are described as (5,1,1,1).

We discuss selective subdivision based on this simplified
version of subdivision. In our scheme, a knot spacing d; is
assigned to each vertex v;, and its initial value is assumed to
be 1. When vertex v; is split, knot spacings of newly created
vertices are specified to be d; /2.

For selective subdivision, we introduce the following
subdivision rules for adjacent faces:
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These simple rules do not change the positions of cen-
troids of adjacent faces. For example, when vertex A in
Figure 4(a) is selectively split and face A1 BC'D is created,
the positions of Vs for faces ABC'D and A'BCD do not
change. Therefore, the position of B!, C!, and D! can be
correctly obtained after A is selectively split.

Figure 4(b) shows new faces created by the vertex-split
operation. Numbers shows the values of knot spacings. For
selective subdivision, triangle holes appear and they must be
filled with new faces. We call such triangle faces as inter-
mediate faces, and a corner of each face as an infermediate
corner, which is shown by a triangle mark in Figure 4(b).

For describing the algorithm for the vertex-split opera-
tion, we define a few notations. The operation that splits
v is described as split(v). A set of vertices that are con-
nected to v are referred to as star(v). If vertex v; contains
intermediate corners, marked(v;) becomes true. Then, the
algorithm for splitting vertex P in Figure 5 can be described
as follows:

1. If vertex v; is included in star(P), and marked(v;) is
true, v; is split before P. split operations can be called
recursively.

2. Four new vertex positions are calculated using four ad-
jacent faces that are not intermediate. In Figure 5(b),
vertices Py, P>, P53, and P, are created.

3. Faces around P are referred to as fq, fo, .., f5. If f; is
not intermediate, the vertex P of f; is replaced by the
new vertex P;. Otherwise, vertex P of f; is replaced by
the two new vertices calculated for two adjacent faces.
In Figure 5(c), the positions of Ps of f1, f2, f3, and fy
are modified, and f5 is converted into a quadrilateral
face.

4. Triangle faces are created to fill holes. Marks are
added at the corners of new triangle faces, as shown
in Figure 5(d).

Figure 6 shows an example in which 18 faces are subdi-
vided into 451 faces using our selective subdivision scheme.
In this subdivision, vertices are split in order of the distance
between the current position and the limit position.
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(a) New vertices.

(b) Simplified subdiv.

Figure 3. Doo-Sabin subdivision.

Figure 8 shows an advantage of our method. In this
model, the uniform Doo-Sabin subdivision exponentially
increases the original 413 faces to 1480, 5898, 23562 faces,
and so on. In our method, the model can be subdivided in



Figure 4. New vertices and faces: (a) New posi-
tions of 4 and B. (b) Intermediate faces and
corners.
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Figure 5. A sequence for realizing selective subdi-
vision.

Figure 6. An example of selective subdivision.
(left:18 faces, right:541 faces).

any number of faces, as shown in this figure. Therefore,
users can easily select enough quality for their purposes.

4.3. Catmull-Clark NURSS

As the Doo-Sabin NURSS, the Catmull-Clark NURSS
extends the standard uniform Catmull-Clark subdivision
surface and its refinement rules correspond to knot-doubling
of bi-cubic non-uniform tensor product B-spline surfaces.
The surface is refined by splitting faces and averaging ver-
tices. The knot spacings are assigned to the edges for
the Catmull-Clark NURSS since the surface is bi-cubic in
essence.

4.4. Selective Subdivision for Catmull-Clark sur-
face

Our implementation of the SNUS for the Catmull-Clark
surface has the following properties: 1) For a regular mesh,
the faces can be subdivided into two or four faces along
their isoparametric lines. 2) The faces which have extraor-
dinary points are always subdivided into four faces together
with all other faces around their extraordinary points if nec-
essary. 3) The limit points of the all vertices are guaranteed
to be on the limit surface of the original mesh.

4.4.1 Knot insertion to B-spline surface

Before explaining the SNUS for the Catmull-Clark surface,
at first we will analyze the relocation types of the vertices
of the control mesh of a non-uniform Bi-cubic B-spline sur-
face by inserting knots at midpoints of knot spacings to un-
derstand our SNUS algorithm.

By inserting two knots for each parameter directions, the
control points of a B-spline surface will become as shown in
Figure 7(a). The original mesh in black color are changed to
the new mesh in green by inserting knots along the isopara-
metric lines in red. The vertices in yellow of the original
mesh are moved to new positions indicated by red points.
The blue points shows the positions of newly created ver-
tices. There are 9 types of their positions determined by
the combinations of Equations (3), (4), and (7)(or (9)). For
example, the position of vertex F (the vertex point in the
case of the NURSS Catmull-Clark subdivision) can be de-
termined by applying Equation (4) in the both parameter
directions. In other words, if we insert knots selectively, the
face point is only of one type (A), the edge point 3 types
(B, C, D), and the vertex point 5 types (E-TI).

4.4.2 Algorithm

We assume that all faces are quadrilateral, which can be
achieved through one step of the Catmull-Clark subdivi-
sion. As shown in Figure 7(b), the subdivision patterns of
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(a) Knot insertion to B-spline
surface.

(b) Subdivision patterns.

Figure 7. Subdivision patterns.

the faces are classified into 1) a face is subdivided into four
subfaces: four-face subdivision, and 2) a face is subdivided
into two subfaces: two-face subdivision. Their vertices are
calculated or updated assuming that a knot is inserted at the
midpoint of the knot spacing assigned to the edges of the
face to be subdivided. The vertices of the subdivided faces
can be classified into one of vertices from A to I and their
locations are obtained.

As shown in the right-bottom corner of Figure 7(b), if a
two-face subdivision is supposed to be adjacent to another
two-face subdivision in the other parameter direction or a
four-face subdivision, the locations of the vertices can not
be determined in such cases. Hence such subdivision pat-
terns are not allowed and if such a subdivision is required,
both of the faces are subdivided by four-face subdivision.

The types of the vertices are classified into 1) normal,
2) t-shape, 3) shallow, and 4) deep. The t-shape is a ver-
tex generated between subdivided and unsubdivided faces
and whose valence is equal to 3 (b in Figure 7(b)). The
shallow(deep) is a vertex whose subdivision depth is shal-
lower(deeper) than one of the vertices connected to it. Ver-
tex d is classified as “swallow” because it is shallower that
vertex ¢. Hence vertex c is deep. The other vertices are
regarded as normal. The vertices of the initial mesh are
all normal vertices. Vertex a is also normal because the
vertices connected to it are generated or relocated by the

same number of subdivisions. The distinction between the
normal and the others is important because if the mesh in-
cludes t-shape, shallow or deep vertices, we do not perform
subdivision around them. We could perform a NURSS sub-
division, but the limit surface would become different from
that of the original mesh.

The SNUS algorithm for the Catmull-Clark surface is
summarized as follows:

1. As a preparatory step, 1 is assigned to all edges of the
initial mesh.

2. Select edges to be subdivided by some criteria, such
curvature around the vertices connected to them.

3. The edges selected in the previous step are paired with
two opposite sides and attach a subdivision flag to all
these edges.

4. A face which has at least one selected edge is subdi-
vided with two-face or four-face subdivision according
to the total number of edges with the subdivision flag
and t-shape vertices included in the face. If the num-
ber is equal to two or four, a two-face or four-face sub-
division is performed. Before subdividing faces, the
new locations of face, edge, and vertex points and their
limit points are calculated and attached to the faces,
edges, and vertices, respectively. For the edges and
vertices, all possible locations are attached for further
subdivisions.

5. In case that the vertices of a selected edge or at least
one of its paired edges is t-shape, at first t-shape ver-
tices are converted to normal by subdividing the ad-
jacent face with two-face or four-face subdivision ac-
cording to the state of the face.

6. Repeat steps from 2) to 5) if necessary.

Note that the above algorithm does not essentially in-
crease the number of extraordinary points through the sub-
division process. The t-shape vertices are generated during
subdivision, but they are supposed to be converted to nor-
mal vertices by further subdivisions.

Figure 9 shows two illustrative examples applied to uni-
form Catmull-Clark surfaces. (a) and (b) are meshes in the
subdivision process generated from the same initial mesh
and the vertices in (b) and (d) are moved to their limit
points. They are located on the limit surface of the initial
mesh. Because of the difference of the criteria applied to
them, they are differently subdivided. Figure 10 shows the
same monster head in Figure 8, but it is used as a Catmull-
Clark surface. The criterion we used here is angles between
each edge and the normals at its vertices. One and two
SNUS subdivision steps produce meshes (b) and (c). (d)
is a shaded image of the mesh (c). The numbers of the faces



of (b) and (c) are 4301 and 7037 and those of the corre-
sponding fully subdivided meshes are 4712 and 18848, re-
spectively.

4.5. SNUS in parameter space

We can apply our technique naturally to NURSS sur-
faces in the parameter space and use the values of the knot
spacings as a criterion for selecting knot insertion locations.
One of the typical examples which definitely need SNUS
is degree-elevated subdivision surfaces. The converted sur-
face is represented with multiples knots and many of its knot
spacings are equal to 0. The SNUS can avoid inserting knots
to the mesh where the knot spacings are equal to 0 or rela-
tively very small.

Figure 11 shows Catmull-Clark surface examples subdi-
vided with the SNUS in the parameter space. In the figure,
red and yellow edges are derived from those of the con-
verted mesh from Doo-Sabin to non-uniform Catmull-Clark
surfaces[8]. The initial knot spacings of the red and yellow
edges are supposed to be 0 and 1, respectively. To clarify
the effect of the SNUS, 0.1 is assigned to the red edges in-
stead of 0. The standard subdivision generate meshes shown
in Figure 11(a) and (c) and a lot of polygons are accumu-
lated around the red edges without much improvement of
the shape according to the subdivision depth. If the original
value 0 is assigned to the red edges, polygons degenerated
to a point or a line are produced. The SNUS can avoid such
accumulations of unnecessary polygons. The sizes of the
files (obj) of those meshes are (a) 1.66, (b) 0.64, (c) 6.82,
and (d) 2.11 MBytes. The sizes of the meshes by the SNUS
are about one third of those generated by the standard sub-
division.

5 Conclusion

This paper presents a new technique, the SNUS, for lo-
cal refinement of Doo-Sabin and Catmull-Clark subdivision
surfaces, which selectively inserts new knots at midpoints of
knot spacings, as for the non-uniform recursive subdivision
surfaces (NURSS).

To explore the capabilities of the SNUS, we have de-
veloped several types of SNUS based adaptive subdivision
methods for Doo-Sabin and Catmull-Clark surfaces. In the
Doo-Sabin subdivision, we proposed a vertex-split opera-
tion that enabled selective subdivision only using current
vertex positions and knot spacings. Our system allows to
subdivide models into the specified number of faces instead
of the exponential increase. In the Catmull-Clark subdivi-
sion, our method subdivides a face into two or four sub-
faces along their isoparametric lines. It does not increase
the number of extraordinary points. In the both selective

subdivision schemes, the limit points of the all vertices are
guaranteed to be on the limit surface of the original mesh.

One of the future research topics is on local refinement
by inserting knots at arbitrary positions instead of mid-
points. Since the quality of adaptive subdivision depends
heavily on subdivision criteria. Additional work should be
devoted to such criteria to extract the maximum power of
the SNUS.
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(a) Initial. (b) Depth=1.

{c) 3004 faces  (c} 7500 faces

Figure 8. Selective subdivision into specified num- benhs 1 St
bers of faces. (c) Depth=2. (d) Shading.
Figure 10. SNUS for a uniform Catmull-Clark

surface.

(a) Uniform (dep.=2). (b) SNUS (dep.=2).

(c) In process. (d) Limit points.

Figure 9. SNUS for a uniform Catmull-Clark sur- (¢) Uniform (dep.=3). (d) SNUS (dep.=3).

face. ; .
Figure 11. SNUS in parameter space.



