
 
SHAPE RECONSTRUCTION OF POLES AND PLATES 

FROM VEHICLE-BASED LASER SCANNING DATA 
 

Hiroshi Masuda1 , Shogo Oguri2  and He Jun2 
1 Professor, Department of Mechanical Engineering and Intelligent Systems, 

 The University of Electro-Communications 
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; 

E-mail: masuda@sys.t.u-tokyo.ac.jp 
 

2 Master student, Department of Systems Innovation, The University of Tokyo 
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; 

E-mail: oguri@nakl.t.u-tokyo.ac.jp 
E-mail: hejun@nakl.t.u-tokyo.ac.jp 

 
 
 

KEY WORDS: shape reconstruction, point-cloud, geometry processing, mobile mapping 
 
ABSTRACT: A vehicle-based laser scanner (VLS) can capture 3D point-clouds of road surfaces, buildings and 
roadside objects while running on the road. However, few researches have been done for reconstruct roadside objects, 
which consist of much small surfaces compared to roads and buildings. Roadside objects, such as utility poles, traffic 
signs, streetlights, guardrails, have to be maintained periodically. If 3D models of roadside objects can be efficiently 
constructed, they can be used for planning maintenance tasks without on-site survey.  For reconstructing roadside 
objects, it is important to extract primitive surfaces such as planes and cylinders. However, it is difficult to stably 
extract surfaces from very noisy VLS data. In this paper, we propose a stable shape reconstruction method for 
relatively small poles and plates from noisy VLS data. Since the 2D projection of vertical poles and plates produce 
dense points, we extract points of them using the differences of point density. We extract dense regions using the 
Delaunay triangulation. Then we detect poles and plates from points in dense regions. Our method can detect surfaces 
even when objects attach with other objects, such as trees and shrubberies. By using detected surfaces, we reconstruct 
cylindrical poles, rectangular plates, circle plates and non-planar plates.  
 
1. INTRODUCTION 
 
A vehicle-based laser scanner (VLS) can capture 3D point-clouds of road surfaces, buildings and roadside objects 
while running on the road. While shape reconstruction of roads and buildings has been intensively studied so far, 
few research work have been done for roadside objects. It is not easy to extract surfaces of roadside objects, 
because roadside objects consist of much small surfaces compared to roads and buildings. Roadside objects include 
utility poles, traffic signs, streetlights, guardrails, and so on. Since there are a huge number of roadside objects in 
residential areas, their periodic maintenance tasks are very costly. If 3D models of roadside objects can be 
efficiently constructed from VLS data, they can be used for planning maintenance work without on-site survey� 

 
For reconstructing roadside objects, it is important to extract primitive surfaces such as planes and cylinders. 
Surface extraction from a point-cloud has been intensively studied in computer-aided design and computer graphics. 
RANSAC and the least squares methods are commonly used for surface detection. However, it is not easy to detect 
small surfaces from very noisy, inaccurate and sparse VLS data. The quality of VLS data is very limited because of 
the inaccuracy of GPS, IMU, and calibration. In addition, the density of points is sparse in moving directions. In 
typical laser scanners mounted on vehicles, distances between scan lines are 6cm ~ 15cm when the rotation speeds 
of laser scanners are 75Hz ~ 200Hz. This density is not enough for small roadside objects. 
 
Fortunately, most roadside objects consist of simple plates and poles, and they are placed vertically or horizontally.  
Although it is almost impossible to reconstruct general surfaces of small objects using a sparse point-cloud, it may 
be possible to extract a few known types of surfaces. In this paper, we focus on reconstructing shapes of poles and 
plates that are located vertically or horizontally. 
 
Some researchers have studied to detect pole-like roadside objects. Lehtomaki, et al. (Lethomaki, 2010) detected 
pole-like objects by grouping scan-lines of each pole, because scan lines of a cylindrical pole are circular 
cross-sections. However, this method is unstable when a point-cloud is sparse and the radii of poles are small, such 
as streetlights. 



Chen, et al. (Chen, 2007) clustered roadside objects by projecting points on a plane, and classified points using the 
principal component analysis. Yokoyama, et al. (Yokoyama, 2011) also detected poles and plates using the 
principal component analysis. They applied Laplacian smoothing for robustly detecting poles. The PCA method is 
powerful to estimate shapes of poles and planes, but it is based on correctly segmented points. However, it is not 
always possible to obtain correct segmentation. When multiple objects are grouped into the same segment, the PCA 
method often fails to adequately calculate characteristic eigenvalues for poles and planes. In Figure 1(a)(b), poles 
could not be correctly separated because an object is attached with other objects such as trees and shrubberies, and 
two objects are very closely located. These cases are not negligible in point-clouds of residential areas.  
 
When we restrict shapes to vertical or horizontal surfaces, it is reasonable to project points on a 2D plane. Since the 
projections of cylinders and planes are circles and lines, respectively, the problem is to extract circles and lines 
from 2D points. Bolles, et al. (Bolles, 1981) detected cylinders by fitting a circle or an ellipse to projected points by 
using RANSAC. This method is useful for detecting poles from points of multiple objects. However, the RANSAC 
method may fail to detect correct shapes when point-clouds are very noisy. Figure 1(c)(d) show vertical projections 
of points. In these examples, pole-1 and pole-3 could not be detected using the RANSAC method; no circle was 
detected from Figure 1(c) and a wrong circle from Figure 1(d), as shown in Figure 1(e).  
 
In this paper, we propose a stable shape reconstruction method for relatively small poles and plates from noisy VLS 
data. Our goal is to reconstruct object shapes rather than classifying object types, although our method is useful for 
classification. Since the projection of vertical poles and plates produce regions of high point density, we cluster 
points using the differences of point density. Then we detect primitive shapes from dense regions. In the following 
section, we explain point-clouds we used in this research, and then we show how to extract poles and plates in 
Section 3. Finally we conclude our research. 

 
2. CLUSTERING OF POINT-CLOUDS 
 
In this research, we used a MMS X-640 developed by Mitsubishi Electric Corporation. This MMS has 4 laser 
scanners (Sick LMS 291), which measure front upward, front downward, rear upward, and rear downward 
directions, as shown in Figure 2.  
 
Laser scanners in upward and downward directions capture different scenes, as shown in Figure 3. While the 
upward data include utility poles, traffic signs, street lamps, and trees, the downward data contain road surfaces and 
partly include poles and other objects on road surfaces. 

 

Figure 2: Mobile mapping system X-640  

 

Figure 1: Points of roadside objects and their vertical projections. 
 



Figure 3 shows our process of clustering point-clouds. We exclude road surfaces from downward data, and the rest 
of points are merged with upward points. Road surfaces can be extracted using the z values and the slope of points 
in scan lines (He, 2012). Then we generate a kd-tree of the merged points. We search for k-nearest neighbors at 
each point and construct a k-nearest neighbor graph. Edges are defined when the distances of two points are less 
than threshold Lk. In this paper, we used Lk =35cm. Finally, a point-cloud is divided into groups of connected points. 
Many roadside objects are separated into different groups, but not a few objects are grouped with other objects 
when two objects are nearly located, as shown in Figure 1.  
 
3. DETECTION OF POLES AND PLATES 
 
3.1 Detection of High-Density Regions 
 
Figure 4(a) shows points of a street lamp and a tree in the same group. Figure 4(b) shows their projection on a 
horizontal plane. When circles are searched for from projected points by using the RANSAC method, a wrong 
circle is detected as the optimum solution, as shown in this Figure.�To solve this problem, we consider further 
subdividing points using the differences of point density.  
 
When points are projected on a horizontal plane, vertical poles generate regions of high point density. In Figure 
4(b), high-density regions represent the pole of the street lamp and the trunk of the tree. We apply Delaunay 
triangulation for separating high-density regions from other points. Figure 4(c) shows the triangulation of projected 
points. Two squares show high-density regions. In this triangulation, while sparse regions are connected by long 

 

Figure 3: Clustering of point-clouds. 

 

 � (a) 3D points      (b) Projection         (c) Triangulation    (d) Dense regions    (e) 3D points 

Figure 4: Detection of Vertical Poles. 

 

    (a) Guardrail         (b) 3D points       (c) Projection   (d) Dense region    (e) 3D points  

Figure 5: Detection of Horizontal Plates. 



edges, high-density regions are connected by short edges. Therefore, we eliminate sparse regions by deleting 
triangles with long edges that the lengths are more than threshold Lt. Then we select connected components as 
high-density regions when more than N points are included in each connected component. Figure 4(d) shows two 
detected high-density regions. In this example, we used Lt=2mm, and N=30. Figure 4(e) shows original 3D points 
in high-density regions. 3D points of a trunk and a pole can be successfully extracted. 
 
When the height of objects is small, we calculate the eigenvector with the maximum eigenvalue by applying the 
principal component analysis. Then we project points to the direction of the eigenvector. Figure 5 shows a guardrail 
on the road. Figure 5(d)(e) show an extracted high-density region and its 3D points, which represent the beam plate.  
 
We can change threshold Lt adaptively when extracting high-density regions. Multilevel thresholds are useful, 
because the point density depends on the height or length of poles and plates. Figure 6 shows high-density regions 
detected using different thresholds. In our algorithm, we first extract high-density regions using a small threshold, 
and search for poles and plates in the high-density regions. Then we eliminate points in the detected high-density 
regions and extract high-density regions again using increased threshold. In our experiments, most poles could be 
extracted using Lt=2mm, and plates were extracted using Lt=4mm or 6mm for point-clouds of our MMS. 

 
3.2 Detection of Poles 
 
In our method, circles are searched for only from the dense regions using the typical RANSAC method. Three 
points are randomly selected and a circle equation is calculated. Then we count the number of neighbor points of 
the circle. This process is iterated many times and the circle equation with the maximum number of neighbor points 
is recorded. When the maximum number exceeds threshold M, the circle is regarded as a section of a cylinder. The 
height of the cylinder is determined using the range of neighbor points. 
 
Since poles are usually not precisely vertical, we correct directions and radii. When a circle equation is determined, 
the direction of a cylinder can be calculated using neighbor points. We project points to the direction of the cylinder, 
and calculate high-density regions again. Figure 7 shows two projections and extracted cylinders. In this example, 
the projection by the cylinder axis increases the maximum number of neighbor points.  
 
Figure 8 shows detected poles. In this example, a tall pole of a street lamp is extracted using a small threshold 
Lt=2mm, and a short trunk of a tree is extracted using Lt=4mm.  
 
3.3 Detection of Planar Plates 
 
Planar regions can also be extracted from high-density regions. Although planes can be extracted as lines in 2D 
projected points, we search for planes from 3D points of high-density regions, because the detection of lines is not 

 
Figure 7: Correction of cylinder. 

         
   (a) Lt=2mm       (b) Lt =4mm          (c) Lt =6mm            

Figure 6: Dense regions by different thresholds. 

     
 Figure 8: Detection of Cylinders.                  Figure 9: Extraction of Planar Plate 



stable in our experiments. Figure 9 shows the process of plane detection. Points are projected on a horizontal plane, 
and high-density regions are selected. Then we generate a k-nearest neighbor graph using 3D points. In the 
k-nearest neighbor graph, edges are defined only when distances of two points are less than threshold Lk. We use a 
much larger value for Lk than the value Lt. We used Lk =35mm and Lt =2mm in this example. Then we apply the 
RANSAC method for detecting planar regions.  
 
When planar regions are detected, we estimate the original shapes, as shown in Figure 10. For reconstructing a 
rectangle plate, we apply PCA to a planar region and align the direction of the plate to the main axis, as Figure 
10(b). Then we determine the range of points along the eigenvectors.  
 
The sizes of circle plates of traffic signs are determined by the Japanese standards. Here we prepare template circles 
with diameters of 40cm, 60cm, 90cm, and 120cm. For reconstructing a circle plate, we place a template circle at 
each point, and count the number of points inside the circle. We select the position at which the most points are 
included in the circle. Then we draw the fitted circle C, the inner circle Ci, the outer circle Co, and the envelope 
rectangle R, as shown in Figure 10(c). Then we count the numbers of points inside the circles and the rectangle. We 
refer the number of points inside S as num(S); the area of S as area(S). The circle is tested whether the following 
conditions are satisfied: 
 

num(C) >α ,  
area(C){num(C) − num(Ci )}
num(C){area(C) − area(Ci )}

> β ,  
area(C){num(Co ) − num(C)}
num(C){area(Co ) − area(C)}

< γ ,  area(C){num(R) − num(C)}
num(C){area(R) − area(C)}

< δ ,  

where α ,β ,γ ,δ  are thresholds. We used α = 50,  β = 0.9,  γ = 0.5,  δ = 0.7  in this example. If the circle does not 
pass this test, it is discarded. 
 
3.4 Detection of Non-Planar Plates 
 
Figure 5 shows guardrails, which are very popular in Japanese residential areas. Since the beam plates of guardrails 
are not planar, we use the template of guardrails. As shown in Figure 11, we fit the template to points in 
high-density regions. When the point-set fits to the template, it is regarded as a beam plate of a guardrail. We used 
the sum of distances between the template and points for the metrics of fitting. When a beam is extracted, poles are 
extracted from the rest of points.   
 
3.5 Experimental Results 
 
Figure 12 shows some reconstructed shapes of roadside objects. Our method could successfully detect poles and 
plates. In the left case, support structures were also extracted as cylinders.  

          

      (a) Shape reconstruction            (b) Rectangle plate                (c) Circle plate 
Figure 10: Reconstruction of plate shapes. 

    
 Figure 11: Reconstruction by a template.          Figure 12: Reconstruction of roadside objects. 



We evaluated our method using practical VLS data. We first applied to 40 traffic signs with poles and plates. When 
the RANSAC method was applied without extracting high-density regions, poles and plates were extracted only 
from 11cases (27.5%), but our method could extract them from 31 cases (81.6%). We also extracted poles from 
large-scale point-clouds in residential areas (Figure 13). We extracted poles that are taller than 2m. We could 
extract 403 poles from 460 poles (87.6%). In this evaluation, the result showed that our method could extract poles 
from points in which multiple objects are included (Figure 14). However, our method failed to extract poles when 
points of poles are very sparse, or poles attaches with high-density regions. 

 
4. CONCLUSION 
 
We proposed a method for robustly extracting poles and plates. We segmented points using differences of point 
densities and searched for surfaces in high-density regions. We also proposed a method for reconstructing rectangle 
plates, circle plates of traffic signs, and beam plates of guardrails.  
 
In future work, we would like to improve the robustness of shape reconstruction. For improving our method, we 
plan to apply a graph-cut algorithm for detecting high-density regions more robustly. We also would like to 
evaluate the preciseness of radii of detected cylinders. In addition, since most roadside objects have known 
structure, we would like to reconstruct more complete shapes using flexible templates for streetlights, traffic signs, 
signals, and so on. Point-clouds in this paper were courtesy of Aisan Technology Cooperation. We would like to 
thank their support. 
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Figure 13: Detected Poles from a Point-Cloud. 

 
Figure 14: Detected Poles in Points of Multiple Objects. 


