レーザ計測を用いた大型鋼板の工程の支援(第3報)

電気通信大学 〇小林 中, 千田 暁慧, 増田 宏

Support to process of Large Steel Plates using Laser Scanning Data

The University of Electro-Communications: Ataru Kobayashi, Akisato Chida, Hiroshi Masuda

Ships and tanks consist of a lot of curved steel plates, which are gradually manufactured from flat plates in many steps. Laser scanners are useful to evaluate plate shapes quantitatively and to record a sequence of bending processes. In this research, we propose a monitoring method for plate bending based on point-clouds captured using a terrestrial laser scanner. In our method, curved plates are flattened and mapped onto a common parameter space. In our experiments, our method achieved sufficient accuracy for tracking each point on a plate.

Keyword: point cloud, surface fitting, steel plate bending

1. はじめに

船舶やタンクなどの大型建造物は、曲がりをもった多数の 大型の鋼板によって構成されている.それらは人手やプレス 機によって加工されており、目的形状との差異は、作業者が 木型を曲げ板に当てはめて目視で判断している.作業者は、 そのずれ量から次の加工箇所を考え、加工を施す.これらの サイクルを何度も繰り返して一枚の曲げ板が完成する、この ような加工プロセスは、作業者の勘や経験によるところが大 きく、作業の効率化や技術継を困難にしている.

そこで本研究では、レーザ計測から得られる点群を用いて 板の形状を高速かつ安定に算出し、加工工程を定量的に把握 することを目的とする.

前報では、平面化手法の ABF++ (Angle Based Flattering) [1] と HM (Harmonic Mapping) [2]を比較し、曲げ板モデル上に生 成した等パラメータ曲線の精度評価をおこなった. その結果 では、HM が計算速度、精度ともに優位であった.本報では、 平面化の際のスケーリングを考慮することで、ABF++ での精 度改善を施す.また、曲げ板モニタリングによる支援システ ムの検討も行う.さらに、同一箇所の追跡に用いている平面 化手法の妥当性に関して、実際の曲げ板を用いて位置検証を 行ったので、それについても報告する.

2. 平面化手法の改良

2.1 スケーリングの考慮による ABF++の精度改善

本手法では、レーザスキャナで取得した大型鋼板の点群デ ータから鋼板部分を自動抽出し、そのメッシュモデルを平面 化することで、パラメータ化を行う.このとき平面化手法と して、等角写像のABF++と調和写像のHMを用いる.ABF++ は頂点周りのエッジ角度の比を保存する写像であり、HM はラ プラシアンが0になるような写像である.

前報では、曲面上に生成した等パラメータ曲線の評価を行 うと、ABF++は HM に比べ精度が劣っていた.この原因につ いて検討を行った結果、両者のスケーリングに関する感度が 異なることが原因であることがわかった.

前報での平面化では、曲げ板を1×1の正規化空間に写像し てパラメータ化を行った.一方、元々の板は、約5m×4mで あり、縦横比は1:1からややずれている.我々の実験では、 HM が縦横比の変化にロバストなのに対して、ABF++ではこ の変化に敏感であった.角度を保存するABF++では、角度比 が縦横比の変化によってずれることが原因である.

そこで, ABF++ の適用においては, メッシュの各辺を B スプライン曲線で近似し, その長さを算出して辺の長さの比 が保存するようなパラメータ空間への写像を行った.

大型鋼板では、板曲げを行った後で、所定の寸法に切断す るため、初期の板寸法は厳密に 5000mm×4000mm ではなく、 かなりのばらつきがある.図1の例題においては、計算機上 で求められた寸法 4922mm×3790mm を用いた.表1に板の縦 横比率と計測点と B-spline フィッティングにより生成された 点の距離を残差として示す.またその際の残差を、図1に分 布図として示す.各点の色は残差が2mmを超えると赤に、0mm に近づくほど青となる.

これらの結果より、ABF++では、曲げ板の境界線の長さ比 に合わせることが精度の向上に必要であることが確認できた.

表1. B-Spline フィッティングの平均残差

パラメータ空間の 縦横比 (width/height)	ABF++	НМ
1.00	2.30 mm	0.47 mm
1.25 (5000mm×4000mm)	0.61 mm	0.47 mm
1.29 (4922mm×3790mm)	0.45 mm	0.47 mm

2.2 不完全な境界を持つ曲げ板への対応

曲げ板の境界線の長さ比を考慮することで ABF++による平 面化が改善できた.また,前報で報告したように ABF++は非 凸形状への適用が可能である.そのため,ABF++による平面 化は,不完全な境界をもつ板にも適用可能である.

現実には、鋼板の置き方によっては、一部が工作機械によって隠されることがある.そのような場合には、鋼板の4辺 すべてを得ることはできないため、一部の境界線のみを用い て、平面化を行うことが必要となる.ABF++では、最低限、 2点が拘束されれば平面化が可能であるため、原理的には、 1辺が見えているだけでも平面化が行える.一方、制約され る辺の個数が少なくなると、精度が劣化する可能性がある. そこで、4章の評価実験において精度検証を行う.

3. 曲げ板のモニタリングシステム

本手法に基づく曲げ板のモニタリングシステムについて検

討する.加工を支援するにあたり、求められる要件は、曲げ 板の現状を作業者に示すための数値化と可視化である.

板の形状を示すパラメータとして、曲線や曲面の曲がり具 合を示す曲率が挙げられる.本研究では実用的観点から、目 的形状との曲率の差分を分布で表示することで、板曲げ加工 を支援することを考える.

3.1 設計データとの曲率差分の表示

目的の曲面と加工途中の曲面の差分を算出することで,各 箇所の曲がりの過不足を把握できると考えられる.それぞれ の曲面上で各点における曲率を算出した後,パラメータ空間 で重ね合わせることで曲率の差分を得られる.

図2は実際に曲げた板とCADの設計データによる曲率差分 の分布を疑似カラーにより表示した例である.色は、曲率の 差分を示している.灰色の部分は計測した曲げ板とCADデー タともに平面に近い状態であり、例外処理として疑似カラー を付与していない.この図を提示することで、曲げが不足し ている箇所を直感的に把握できるため、次の工程で重点的に 負荷をかけるべき箇所が特定できる.

3.2 全工程からの曲率差分の表示

大型鋼板の曲げ加工において、変形過程は熟練の作業者の 手に委ねられており、外部からはブラックボックスとなって いる.そこで、板の変形過程を計測し、計算機上で時系列デ ータとして保持することで、これまで暗黙知となっていた加 工と変形の関係性を定量的に把握できると考えられる.

ここでは、各工程での形状の変化を可視化する.図3、アル ミ製の板を平面から徐々に曲げていく過程において、加工前 後の曲率の差異を可視化した図である.青い領域は曲がった 箇所を示している.加工前後が共に平面の場合は、差分を表 示していない.このような図を提示することにより、作業者 は自分が行った作業の効果を直感的に把握できる.

4. 精度評価実験

曲げ板の変形過程をモニタリングするには、板上の位置同 定が必要不可欠である。そこで、板の同一箇所が正確に追跡 できているかに関して評価実験を行った.実験では、1m×0.8m のアルミ製の板上9か所(図4)に対して、実際の曲げ板上のシ ールを貼り、点群上のシール位置と、計算で求められた座標 と比較することで位置精度を検証した。今回の実験における レーザスキャナのピッチ間隔は板上において約 1mm である.

表2に、シール位置の座標の検出結果を示す.評価は、ABF++ と HM に関して行った.どちらも、ずれは 1mm 程度であり、 実用上、十分な精度であることが確認できた.

次に、すべての境界線が認識できない不完全な点群を想定 した評価実験を行った.この場合は、ABF++のみが適用可能 である.境界線を3辺のみが得られるケースと2辺のみが得 られるケースで平面化した.表3にその結果を示す.

表3からは、制約する境界線が少ないほど残差が大きくなっている.特に境界線を抜いた付近での箇所の残差が大きくなったが、制約に利用した境界付近では精度を保つことが確認できた.実際の現場での精度管理では、曲げ板上に木型を当てはめることで行われており、5mm 程度のずれは許容されている.このことを考慮すると、3辺を制約すれば実用可能であることがわかった.

5. おわりに

凸形状以外にも適用可能な ABF++ の改良を行い,また, 加工支援を目的とするモニタリング手法について検討した. 加えて,板の同一箇所の追跡に関する精度評価を行った. ABF++, HM ともに位置精度の誤差は 1mm 程度であることが 確認できた.また,未計測領域を含むケースに対しても ABF++ は境界線が 3 辺まで計測できていれば,実際の現場で利用可 能な精度を保つことが確認できた.今後は,実際の現場にお いても同等の精度が保てるか評価したいと考える.

参考文献

 A.Sheffer: ABF++ Fast and Robust Angle Based Flattening, ACM Transaction of Graphics, 24(2), 2005, 311-330.
M. Eck, et al.: Multiresolution analysis of arbitrary meshes. SIGGRAPH'95, 1995, 173–182.

図3. 変形過程の差異の可視化

図4. 同一箇所の追跡の評価実験

表 2. 同一箇所の追跡の精度評価

	座標のズレの平均[mm]
ABF++	1.06
HM	0.92

表3. 不完全な境界を持つ曲げ板の同一箇所追跡の精度評価

	座標のズレの平均[mm]
4 辺での制約	1.06
3 辺のみ制約	3.55
2辺のみ制約	7.86