点群データからの大型構造物の鋼材検出手法

電気通信大学 ○葭内 郁, 篠崎 有希, 緑川 佳孝, 増田 宏

1. 序論

送電鉄塔などの大規模構造物においては、腐食などによる劣 化が生じた場合に部材交換が必要となる.現状では、部材交換 の必要性を調べるために、定期的に手作業による測量が行われ ている.しかし従来の方法では、高所での作業や感電による危 険性や、測量に伴うコスト、部材寸法の数値が作業者によって ばらつくといった問題点があった.これらの問題に対して、地 上型レーザスキャナで取得した点群を用いて鋼材の寸法を算出 することで、作業効率の改善や、安全性・寸法精度の向上が期 待できる.

鉄塔は、複数の鋼材がボルトで接合されて組み立てられてい る.鋼材の多くの場合アングル鋼なので、点群からの平面検出 を利用して、鋼材を構成する平面の検出ができる.鉄塔の測量 では、各鋼材の端部から、ボルトや穴までの寸法が必要となる ので、鋼材の端部を算出することが必要である.そのためには、 鋼材の厚みに相当する段差を適切に検出し、鋼材ごとに平面を 切り分けることが求められる.

既存の平面検出手法では、領域成長法や RANSAC 法が用い られるが、いずれの場合も、鋼材の端部が検出できるように閾 値を適切に決めることが難しい.図1に示すように、平面検出の 閾値を小さくすると、単一の鋼材の平面が複数に分割されるこ とがある.計測のばらつきの影響や、長い鋼材では反りが無視 できないためである.一方で、閾値を大きくすると、小さな段 差で区切られる平面同士が併合し、別々の部材が同一部材とし て誤検出される問題が生じる.

本稿ではこうした問題を解決するため,鉄塔を構成する鋼材 の境界を正確に自動検出できる部材抽出手法を検討する.

2. 概要

本研究では、レーザスキャナ Faro Focus 3D X330 によって取 得された高圧送電線の鉄塔の点群データを用いる.スキャナは 鉄塔中央の地表に配置し、2億点を計測するモードを使用した.

処理の流れを図 2 に示す.本研究で用いる点群データは、2 次元構造を持つ PTX フォーマットとする.各点を 2 次元格子に 対応付けることができるので、2 次元格子上で平面検出を行う ことができる.ここでは、まず、隣接関係と3 次元距離に基づ いて、連結領域を検出し、領域分割を行う(図 2(b)).次に、 各連結領域から、RANSAC 法を用いて平面検出を行う.検出さ れる平面は、図 2(c) に示すように、単一の鋼材の平面が複数に 分断したり、複数の鋼材の平面が併合したりしていることがあ る.そこで、隣接する 2 平面が滑らかに接続するかを調べ、滑 らかに接続すればそれらを併合する(図 2(d)).それにより分 離した平面はなくなるが、一方で、複数の鋼材が過剰に統合さ れた点群が得られる.そこで、平面のスケルトンを算出して鋼 材の構造を推定することで、個々の鋼材を構成する平面へと分 割する(図 2(e)).

3. 鋼材検出手法

3.1. 平面検出

取得した点群に対し RANSAC 法を用いて平面検出を行うが, 探索領域を狭めるために,点群データから生成した画像を利用 する領域分割法を用いる[1].まずレーザ光の照射角度について 方位角と仰角をもとに2次元格子へ点群を写像し画像を生 成する.次に2次元格子上で近傍点の連続性を調べ,連続領域 のセグメンテーションを行う.

続いて分割された領域ごとに RANSAC 法による平面の検出 を行う. RANSAC 法では探索領域からランダムに 3 点を選択し, 平面の式を計算し,最も点数の多かった平面を採用する.しか し,この方法では,複数の鋼材に跨るように選択された 3 点か ら計算された平面が選ばれることがあり,その場合には,図1 に示したように,鋼材の分離や一体化の問題が発生する.

3.2. 平面の併合

平面検出においては、単一の鋼材の面が複数の平面に分断されることがある.ただし、その場合は、分断された2平面の境界は滑らかに接続する.そこで、隣り合う2平面 F₁, F₂ が検出されたとき、それらが滑らかに接続するかどうかの判定を行う.

まず、2平面の境界上の1点に関して、距離が d以下の点を それぞれの平面から求める。それらの点群を P_i, P_2 とする。次 に、 P_i, P_2 のそれぞれから計算される平面の方程式を f_i, f_2 とし、 P_2 が f_i にある比率、 P_i が f_2 にある比率を計算する。ここで は、両者がいずれも 95% 以上のときに、滑らかに接続すると見 做す。滑らかに接続するときには、2平面を併合する。

図3に適用結果を示す.この例題では、734個の平面のうち、 66 個が併合された.目視で調べた限りでは、オクルージョンに よって分断された場合を除けば、分断されたすべての平面を併 合することができている.

(e) 平面の分割

(d) 平面の併合 図 2. 手法の概要

(c) 平面検出

3.3. 平面の分割

併合して得られた平面は、小さな段差のある平面が一体化されている. そのため、段差を検出して、個々の鋼材に分割する 必要がある.

本研究では、まず、鋼材をスケルトン化し中心軸を求め、鉄 塔の構造の推定を行う.次に中心軸上の各点近傍で分散を求め、 最小の分散を与える点を算出する.算出された点の近傍から平 面式を求め、平面からの距離が閾値内となる領域で平面を分割 する.閾値は、最小の分散値を用いて決める.骨格線ごとにこ の操作を繰り返し、平面を分割する.

本手法では骨格検出手法の一つである細線化によって平面の 中心軸の点を抽出し,直線検出によって求めた中心軸ごとに領 域分割する.細線化は二値画像内で前景色によって表される図 形を,境界から中心に向かって背景色に置き換えることで幅 1 の線に変換する処理である.そこで,点群を方位角と仰角を主 軸とする2次元平面格子に写像し,点が投影された格子を前景 色の画素に対応させることで二値画像として扱う.本研究では, Hilditch の方法による細線化処理[2]を用いた.なお,鋼材に穴 が存在すると,細線化された結果は鋼材の中心軸を通らなくな るため,ボルト穴などの閉じた領域を埋める処理を施した.

次に、細線化された点から、直線成分を検出する. 方位角と 仰角による格子上への写像では、直線性が保存されない. そこ で、図 4(a)に示すように、細線化された点を元の3次元座標に戻 し、RANSAC 法による直線検出を行った. 検出された直線を図 4(b) に示す. また、得られた直線分ごと、距離が閾値内の点を 求め、点群をグループ化する.

次に、各グループの点群から段差を見つけて、さらに分割す ることを考える.細線化によって得られた点の近傍から平面式 を計算する.ここでは、領域成長法を用いた平面分割を行う. 領域成長法では、適切なシード領域を求めることが重要である. ここでは、各グループの中心軸が算出されているので、シード 領域の中心は、中心上にあると考えられる.そこで、細線化さ れた各点の半径 r 内の点群から分散を計算し、最も小さい分散 を与える点群をシード領域とする.シード領域から計算される 平面からの距離が d 以内に存在する点群で平面を分割していく. この操作を直線で分割した領域ごとに行い、鋼材の検出を行う.

図 5(a)は、3 本のアングル鋼が一体化した平面の例である. 検出された 2 本の直線から、赤で示した部分がシード領域とし て選択された.図 5(b)は、3 本のアングル鋼と1枚のプレートの 4 つの部材からなる平面の例である.この場合は、3 本の直線が 検出され、赤で示した部分がシード領域として選択された.

本手法による平面分割の結果を図6に示す.図6(a)では,8個 の平面に分割された.境界部のノイズ,鋼材の側面・角なども 平面として検出されるが,面積が小さいので除去できる.最終 的に,3個の鋼材が検出できた.図6(b)では,同様に,4個の鋼 材が検出できている.なお,本手法で使用した平面分割,直線 検出,及びシード点を用いた平面分割における閾値は,実験的 に定めている.

4. 結論と今後の課題

本研究では、地上型レーザスキャナを用いて送電鉄塔から取 得した点群データをもとに、平面検出によって鋼材を正確な境 界ごとに検出する手法を提案した.評価実験の結果、鋼材の厚 みに相当する比較的小さい段差を検出して、鋼材ごとに平面を 分割でき、鋼材の境界を検出できることを確認した.

今後は、実験的に定めていたパラメータや閾値などを自動で 決定する手法の検討などを行っていく予定である.

(b) 併合された平面 図 3. 平面の併合

図 4. 中心軸の検出

(a)3個のアングル鋼

(b) 3 個のアングル鋼材と 1 個のプレート

参考文献

[1] H. Masuda, T. Niwa, I. Tanaka, R. Matsuoka Reconstruction of Polygonal Faces from Large-Scale Point-Clouds of Engineering Plants, Computer-Aided Design and Applications, 11(a), (2014), pp.150-152

[2] C. J. Hilditch Linear Skeleton from Square Cupboards, Machine Intelligence, 6, (1969), pp.403-420