工業設備の大規模点群からの部材形状の抽出と認識

電気通信大学 〇重田 航平, 江藤 信輔, 和田 太一, 増田 宏

1. 緒言

地上型レーザスキャナ (TLS) で取得された工業設備の高 密度点群から 3D モデルを作成する手法については,これま で多くの研究がなされてきた.工業設備においては,標準部品 が多く用いられているという特徴がある.また,計測場所が限 られるため,不完全な点群から形状を再構成する必要がある. さらに,遠方からの計測では,点群密度や計測精度が低くなる ため,検出できる曲面は,平面や円柱,回転体などに限定され るという問題がある.

我々はこれまでに、ユーザが部材の種類を指定して点群に 標準部材を当てはめる手法[1]や、点群から平面と円柱を検出 し、それらを組み合わせて標準部材の 3D モデルの形状を再 構成する手法を開発している[2].前者においては、部材の種 類をユーザが指定する必要があり、また後者においては、曲面 の組み合わせから部材を推定するため、汎用性が高くないと いう問題がある.

もし対象となる部材の種類が同定されれば、こうした問題 が解決できる可能性がある.近年では、Convolutional Neural Network (CNN)の研究が飛躍的に進んでおり、特に画像認識 の性能が非常に高くなっている.そこで、本研究では、点群か ら生成された 2 次元画像に基づいて対象物の認識を行い、そ れに基づいて形状再構成を行うことを考える.本稿では、その ための基礎的な研究として、点群から生成された画像による 物体認識手法について検討する.

2. 点群からの画像の生成

TLS により計測した点群から画像を作成し、その画像を用 いた機械学習によって部材の認識を行うことを考える.本研 究では、点群が、反射強度もしくは RGB カラーを属性とし て保持しているものとする.

まず,点群から画像を生成する. TLS による計測では,図 1 に示すように、ミラーを高速回転させながら本体を水平に 回転させて、レーザ光を全方向に照射する. そのため、図 2 に示すように、横軸をレーザ光の方位角、縦軸をレーザ光の 仰角とすることで、点群を 2 次元画像に投影することができ ることが知られている. ここでは、図 2 の画像を球面画像と 呼ぶ.

ここで,点と画素との関係を保持するために,(x,y,z)を 球面座標 (θ,ϕ,r) に変換する.この変換は

(x,y,z) = (r cos θ sin φ, r sin θ cos φ, r cos φ) を解くことで算出できる. 各点に対応する画素 (1,J) は, θ, φ 方向のサンプリング角度を Δθ,Δφ とするとき, I = int(θ/Δθ), J = int(φ/Δφ) として計算できる. ただし,量 子化誤差の累積により線状の隙間ができることを防ぐため, サンプリング角度を約 5%大きくして,画像サイズを圧縮し ている.

球面画像では、画像の上部と下部が大きく引き伸ばされ、 画像の歪みが大きくなるという問題がある. 図2の上部では、 直線のパイプが大きく曲がっている.このような問題は、図3 に示す仮想的な透視投影面を用いることで解決できる.透視 投影画像は、各画素に対応する(θ, ϕ)を算出し、その位置に対 応する球面画像の輝度値を用いることで生成する.

図2の矩形 A, B, C に対してこの変換を行った例を図4に 示す.この図では、球面画像上の矩形がどのように変形され るかを示しているが、正面付近では、ほぼ同じ形状が得られ るのに対して、上部や下部では、形状が大きく変形している ことがわかる.

本研究では,透視投影画像を用いて物体認識を行い,その 検証を行う.

図2 球面座標を用いた2次元展開

図3 透視投影画像の生成

図4 透視投影画像への変換

3. 点群のセグメンテーション

始めに,図2で示した点群データから,配管系統の点群を 抽出する.まず,画像上で隣接した点の距離が十分近いとき に同じグループになるように、図 5(a) に示すような領域分 割を行う. さらに, 各領域から, 平面と円柱を検出する. こ こでは、RANSAC 法を用いて曲面検出を行い、領域分割し た結果を図 5(b) に示す. また,図 5(c) に円柱のみを示し た.

従来手法では、検出した円柱から、図6のように、 寸法と 位置が特定の関係にあるペアを検出して, 部材形状の推定を 行っていた[2]. しかし、この方法は拡張性が乏しく、検出で きる部材の種類が限定されていた.また、保温材が巻かれた 配管を認識できないなどの問題があった.

図6 従来研究における部材の推定

4. 機械学習を用いた部材の分類

点群からの曲面検出により、図 5(b) に示しように、点群 は、「平面領域」、「円柱領域」、「その他」に分類できる. こ こでの問題は、それらがどのような部材の一部なのか、とい うことである.こうした分類は、機械学習が得意とする問題 であり、分類対象によっては、成功率が非常に高い.

そこで、本研究では、機械学習を用いて、部材の種類を同 定することを考える.機械学習では、対象を特徴量ベクトル で記述し,統計的な手法を用いて,そのクラスの同定を行っ ている.ここでは、特徴量として、点群特徴量と画像特徴量 を用いることができる.

基礎的な検討として、点群画像から配管の部材が認識でき るかどうかを調べる. そのために、分割された領域の周囲を含 むように透視投影画像を生成する.図7に、エルボとフラン ジの透視投影画像を示す.ここでは、エルボとして 50 個、フ ランジとして 70 個の画像を生成した. さらに, 教師用データ に対して、データ数を増やすために、回転、ガンマ変換による 明るさの調整,ノイズ負荷を行った画像を追加した.

本研究では、機械学習に Convolutional Neural Network (CNN) として, ImageNet を用いて学習済みの VGG16 を 利用し、新たに部材の画像を再学習させて、エルボとフラン ジの分類を行った.その結果,フランジの検出率が41枚中 32 枚で 78.0%, エルボの検出率が 20 枚中 14 枚で 70.0%と

図7部材の透視投影画像(エルボとフランジ)

図 8 データ拡張

なった. 5. 考察

エルボとフランジの識別では、成功率は高くないものの、 ある程度の分類が可能なことがわかった.ただし、今回行っ たのは簡易的な検討であり、以下のような検討課題がある. まず,近傍の点群を用いて画像にマスクをかけることで, 部材の画像の背景を消去できる. その場合,識別率が高くで きる可能性がある. また, 通常の点群計測では, 複数箇所で 計測を行い、それらを統合する.計測箇所ごとに点群画像が 生成できるため、曲面の法線を調べることで、最適な見え方 の部材画像を選ぶことが可能であると考えられる. さらに, 画像特徴量と点群特徴量を融合することで、多様な部材の認 識が可能になると考えられる.

6. 結言

本研究では, 点群からの部材抽出として, 機械学習を用いる 手法について検討した. 点群から作成した透視投影画像を用 いて,エルボとフランジの識別を行った結果,成功率は高くな いものの、ある程度の分類が可能であることがわかった.しか し,考察で述べたように,今後検討すべき課題も多い.今後は, それらについて検討を進めていく.

参考文献

[1] H. Masuda, I. Tanaka: "As-built 3D modeling of large facilities based on interactive feature editing." Computer-Aided Design and Applications 7.3 (2010): 349-360. [2] 松岡 諒, 増田 宏, 大規模点群からの生産設備の形状再構 成(第1報), 精密工学会論文誌, 80(6), 604-608, 2014