3次元計測点群を用いた燃焼炉の劣化検出 ~ 点群画像による劣化検出手法の検討 ~

電気通信大学 〇山本 恵里佳, 葭内 郁, 増田 宏

1. 序論

燃焼炉などの大型構造物は,長年の運用により壁面に損耗や亀 裂が発生する.劣化の診断は主に作業者の目視点検によって行わ れている.しかし,評価が作業者の主観に依存してしまうことや, 劣化の度合いが定量的に計測されていないという問題がある.

3 次元計測点群から劣化箇所や量が算出できるならば,劣化に ついて定量的な判断が可能となる.本研究では,地上型レーザス キャナより計測された点群から生成した画像を用いて,大型構造 物の壁面の劣化を検出することを目的とする.

点群を用いた壁面の劣化の検出方法の一つとして,建築時の壁 面の形状を表した基準面を推定し,実際の点群との差分を算出す ることが求められる. 燃焼炉のような大型構造物においては,平 面や円柱のような形状で設計されていた場合でも,建築された構 造物と図面の間にズレが生じることが多い. したがって,基準面 を理想的な平面や円柱として定めた場合,建築時に壁面に発生し たうねりや歪みを,劣化として誤検出してしまうことがある.

これまでの我々の研究では、基準面として B-spline 曲面を生成 し、計測点群と基準面の差分を求めることによって劣化診断を行 う手法を提案した[1]. この手法では、レジストレーション時の誤 差により、微小な劣化が検出できない問題があったため、検査し たい領域を細分化し、劣化検出の結果を統合することで、レジス トレーションによる影響をなくした.また、制御点数を大きくし た B-spline 曲面を基準面として用いることで、亀裂のように微小 な劣化の検出が可能であることを示した.ただし、微小な劣化に 対しては誤検出や見逃しの可能性があった.

TLS で取得した点群には、反射強度もしくは RGB などの色情 報が付随する.これらのデータも用いることで、劣化検出の信頼 性を向上できる可能性がある.また、点群から劣化を反映した画 像が生成できれば、Convolutional Neural Network (CNN) などの 機械学習を用いて劣化の判定ができると考えられる.

そこで本研究では、点群から生成したデプス画像と反射強度画 像を用いた画像認識式手法と組み合わせることで、小さな劣化に 対する劣化検出の信頼性を向上させる手法を検討する.

2. 概要

本研究では、点群から生成された画像を点群画像と呼ぶ.点群 画像を用いる利点として、画像の各画素が3次元座標と対応して いることが挙げられる.それにより、劣化の定量的な数値を点群 データから得ることができる.

点群データを画像として扱うためには点群を平面へと展開する 必要がある.本研究で対象としている燃焼炉では,図1に示すよ うに,円筒部と円錐部によって構成されている.この点群データ は12箇所から計測され,点の総数は約4億5000万点である.点 群を平面展開するために,まず,レジストレーションを行なった 点群データから,図2のように2軸方向に等間隔で切断面を生成 する. 切断面上の点を用いて RANSAC 法により円検出を行い, 円の 集合から壁面の円柱及び円錐の推定を行う.

次に,壁面の点群を円柱座標に変換する.外壁の切断線を円柱 座標系に変換することによって,壁面は近似的に平面に写像され る.このとき,円柱部は水平な平面,円錐部は傾きを持った平面 となる(図3).ここでは,RANSAC法を用いて平面検出を行い, 円柱部と円錐部に分割している.

劣化検出では、展開した壁面点群に対して、デプス画像と反射 強度画像を生成する.デプス画像においては、基準平面から実計 測点までの距離を算出した.また、反射強度画像生成においては、 点群の反射強度を用いた.これらの値をもとに平面に写像した点 群から点群画像を生成する.生成したデプス画像と反射強度画像 を図4に示す.また、拡大図を図5に示す.

図1. 燃焼炉の点群

図 2. 座標の変換

(a)デプス画像

(b)反射強度画像

図 5. 入力画像

3. 亀裂の検出

まず,汎用的な画像処理を用いて,亀裂の検出ができるかどう かを検討する.入力画像は、図5に示すような、壁面のデプス画 像と反射強度画像から,矩形領域を切り取った画像とする.

生成画像から劣化を検出するために, Canny フィルタと Sobel フィルタを用いた手法を比較した. 図6に,各検出手法の流れを 示す.前処理では,燃焼炉の日焼けの影響や,計測点の欠落がノ イズとして発生する影響を小さくするための処理を導入する. こ こでは,メディアンフィルタを用いて平滑化を行った後,元画像 との差分を取る. この画像に対してエッジ検出を行った結果を図 7と図8に示す. Sobel フィルタについては X, Y, 斜めの三方向 に対しフィルタを適用した. また,ノイズ除去のため Sobel フィ ルタ適用後に Bilateral フィルタを適用した.

この結果から,デプス画像については,微小な亀裂の検出が行 えている一方で,誤検出が多い.反射強度画像については,比較 的良好な劣化検出ができている.なお,Canny フィルタでは,ノ イズが抑制されているが見逃しも存在する.Sobel フィルタでは 微小な亀裂が検出できる反面,ノイズが多いという特徴がある.

検出手法の評価を行うために,前報で提案した B-spline 曲面を 基準面として用いた劣化検出手法との比較を行った. 図9に結果 を示す.この手法では,点群密度が小さい領域では,亀裂が明瞭 には検出できておらず,図7のデプス画像による検出と似た結果 となっている.以上のことから,亀裂検出には,反射強度画像が 有効であることがわかる.

4. 損耗・付着物の検出

次に,壁面の損耗や付着物の検出ができるかどうかを検討する. 入力画像は図4に示すデプス画像と反射強度画像とする.壁面の 凹凸を検出するために,画像処理でよく用いられる周波数解析を 用いた.ここでは,凹凸部分を検出するために,フーリエ変換を 用いて低い周波数成分を除去する処理を行った。図10と図11は, 高周波数成分を示している.ここでは,高周波成分の帯域を変え て2通りの結果を示している.また,前報で提案したB-spline曲 面を基準面として用いた劣化検出の結果を図12に示す.デプス画 像,反射強度画像のいずれの場合も,損耗や付着物の検出はでき ていない.

今回の検証では、反射強度画像を用いることで、亀裂のような 小さい凹凸は検出できたが、比較的大きい凹凸については、検出 できなかった.ただし、この問題は、単層での処理ではなく、深 層学習を用いることで解決できる可能性がある.それについては、 今後検討をする必要がある.

5. 結論と今後の展望

本研究では、点群から円柱座標系を用いて画像を生成し、画像 処理的な手法を用いて、燃焼炉の劣化検出を行う手法を検討した. 点群のみを用いた手法では、点群密度が小さくなると亀裂のよう な微小な変形の検出は難しかったが、反射強度画像を用いること で亀裂検出が行えることがわかった.一方で、損耗や付着物のよ うなやや大きい劣化領域については、デプス画像と反射強度画像 からの検出はできなかった.

なお,前報で提案したBスプラインを基準面とした方法を用い ても,同様の画像を生成することができる.今後は,画像生成の 方法を検討するとともに,多層の画像処理を行う深層学習につい ても検討していきたい.

参考文献

[1] Y. Shinozaki, et al., Point-Based Virtual Environment for Detecting Scaffolding, Wearing, and Cracks of Furnace Walls, ASME Computers and Information in Engineering (CIE) (2018)

図 12. B-spline 曲面を基準面とした付着物検出