点群の深層学習のための CAD モデルからの学習データ生成(第2報) Generating Training Data from CAD Models in Deep Learning for Point Clouds(I)

電気通信大学 〇南雲 拓真, 花井 大輝, 重田 航平, 増田 宏

1. 諸言

工業プラントなどの大規模な工業設備においては,設備の3Dモ デルを設備改修時シミュレーションに活用することができる.現 況に忠実な3Dモデル作成には,地上型レーザースキャナ(TLS) で取得できる大規模点群を用いることが有効な手段とされる.し かし,工業設備内では配管が複雑に入り組んでおり,多様な形状 を持つ部材が存在するため,点群から多様な部材を検出する手順 は複雑になる.多様な部材の識別を行うには,近年急速に発達し ている深層学習を利用することが有効な手段である.

深層学習では、一般的に大量のラベルつきデータが必要となる. しかし、点群データの取得や、点群データからの部材抽出、ラベ ルづけ作業には多大な労力とコストが必要となる.そのため、学 習データを十分に用意できず、過学習に陥るという問題がある.

我々のこれまでの研究では、部材の CAD モデルを作成し、モデ ル上に密な点を生成することで、実データを必要としないデータ 拡張手法を開発している[1].また.CAD モデルに生成する点を一 部欠落させ、生成する点群を実データに近づける手法も開発して いる[2].しかし、CAD モデルはデータ拡張としては有効であるが、 実測データにはノイズや欠落などがあり、理想的な状態ではない.

そこで前報では、円形と多角形の欠落、端部のばらつきを追加 する手法と、実測点群を平滑化して理想的な状態に近づける手法 を検討した.しかし、いずれの手法もCADモデルから生成した点 群のみを用いた学習で、実測点群を用いて学習した際と同様の精 度で部材の識別を行うことはできなかった.

本報では、CADモデルから生成した点群に対して、多様な欠落 やノイズ付加を行うことで、認識精度が向上するかを検証する. また、深層学習時のデータ拡張として、画像の CutMix[3]と MixUp[4]についてそれぞれ精度が向上するかについて検証する.

2. デプスマップを用いた深層学習による部材分類

本研究では、図1に示す部材を対象として、TLSによって計測 されたプラントの高密度点群から、部材候補点群を抽出し、それ らのデプスマップを作成する.また、データ拡張のために、CAD モデルからもデプスマップを生成し、実測点群に類似した欠落や ノイスを付加する.さらに、画像に対しても、データ拡張、MixUp、 CutMix を行ってデータ拡張を行なって、学習を行う.

2.1. 点群からのデプスマップの作成

レーザスキャナによる一度の計測で取得できる点群は,計測原 点から見えている点群のみである.ここでは,計測原点からの透 視投影によって,点群を平面に写像してデプスマップを生成する. 物体認識を行う際には,深度を[0,1]の範囲に正規化した数値を各 画素に与えたデプスマップを作成する.

2.2. CAD モデルからのデプスマップの作成

CAD モデルからのデプスマップの作成では、スキャナ原点から 仮想的なレーザを照射し、図1 に示すように、部材の CAD モデ ル上に密な点群を生成する.生成された点群から、2.1 節で示した 手順でデプスマップを作成する.本手法では、図1 のように、レ ーザ照射された CAD モデルの面上において、座標と法線を算出 する.法線は、点群の欠落部を生成するときの基準に用いる.

図 2 CAD モデルからのデプスマップ生成

2.3. デプスマップのデータ拡張

CAD モデルを回転することで、様々な見え方のデプスマップを 生成できる.ここでは、球面を HEALPix によって四角形分割し、 球の中心と四角形の頂点を通る軸を回転軸として設定し、モデル の回転を行なって、デプスマップを生成した.

TLS での点群計測では,境界部での計測点の欠落,ランダムな 点の抜け,照射角度が浅い点の欠落,境界部での異常値,他物体 による隠蔽などがしばしば観察される.そこで,デプスマップに 対しては,次のような処理を施してデータを拡張した.

- ランダムな領域成長による不定形欠落:図 3(a)
- 境界部のランダムな欠落:図 3(b)
- ランダムな孤立点の欠落:図 **3**(c)
- レーザ照射角度が浅い点の欠落:図4
- 正規分布ノイズ付加:図 5(b)
- 境界部での異常値付加:図 5(c)

(c) 孤立点欠落

(a) 不定形欠落

- (b) 端部欠落図 3 点群の欠落
 - の欠落

図6画像のデータ拡張

2.4. デプスマップ画像のデータ拡張

デプスマップは,深度を画素値として持つ画像とみなせるので, 画像用の標準的なデータ拡張も適用できる.このデータ拡張は, CAD モデルと実測点群の双方からのデプスマップに適用する.

本手法では、画像の標準的なデータ拡張に加え、CutMix と MixUpを用いたデータ拡張も行う.これらは、複数の対象物を融 合させた画像を生成する.CutMix は、画像内の長方形領域を切り 取り、別の画像を貼り付けることで画像のデータ拡張を行う手法 である.MixUpは、二つの画像を混合して、画像のデータ拡張を 行う.いずれも、訓練データのラベルを One-Hot 表現のベクトル で表すことで、生成された画像に含まれる元画像の割合を表すこ とができる.図 6に、拡張された画像を示す.

3. 評価実験

本研究では CNN として, ImageNet による学習済みモデルであ る VGG16 を利用して,ファインチューニングを行なって学習し た. 訓練データは, CAD モデルから生成した点群のみを使用し, 検証データとして実測点群を使用した.また,有効画素が少ない デプスマップについては,データ拡張の際に除外した.

3.1. CAD 点群のデプスマップのデータ拡張

本研究で示したデータ拡張による認識結果を表 3 に示す. 評価 実験では,表 3 のデータセットを使用した. また,評価指標とし て F 値(%)を用いた. ここでの記法は, ND を 欠損なしのデータ, Hole を 不定形欠落, Edge を端部のランダムな欠落, Fade を照射 角度が浅い点の欠落, SP をランダムな孤立点欠落, N を正規分布 ノイズの付加, O を端部での異常値の付与とする.

評価の結果,いずれのデータ拡張でも F 値は向上し,特に,端 部のランダムな欠落と不定形欠落の効果が高かった.

3.2. CutMixとMixUpによる拡張

CutMix による拡張の評価実験では、表 4 の訓練用データセットと表 2 の検証用データセットを用いた. なお、表 4 のデータセットは、 2.3 節で示した加工済みのデータセットを均等に含む. CutMix を行う確率は、0.1~0.9 の 5 通りで実験した. 結果は表 5 に示す. この評価実験より、CutMix によるデータ拡張によって認

表 2 加工の有無の比較でのデータセット

	Elbow	Flange	Manometer	Straight	Tee	Valve
Train	1080	3240	1080	1080	1080	1080
Test	171	161	7	80	21	42

表 3 デプスマップの加工に関する評価実験の結果

我 6 / / / / / / / / / / / / / / / / / /								
	ND	Hole	Edge	Fade	SP	Ν	0	
Elbow	70.9	80.0	81.5	75.4	72.7	75.8	71.8	
Flange	79.6	82.9	87.2	80.5	79.1	81.2	79.4	
Manometer	66.7	54.5	54.5	50.0	50.0	44.4	52.1	
Straight	66.7	81.3	74.4	76.4	74.4	75.4	75.4	
Tee	43.8	52.9	62.2	42.4	41.2	43.8	40.0	
Valve	75.6	68.4	77.9	71.4	74.1	70.6	70.6	
Average	72.2	78.6	80.7	75.1	73.5	75.2	73.1	

表 4 精度実験の訓練データセット

	Elbow	Flange	Manometer	Straight	Tee	Valve				
ND	1080	3240	1080	1080	1080	1080				
加工	5184	15552	5184	5184	5184	5184				

表 5 CutMix の評価実験							
	0	0.1	0.3	0.5	0.7	0.9	
Elbow	81.5	79.7	80.0	81.1	80.9	79.2	
Flange	81.9	80.8	82.3	83.4	82.6	83.3	
Manometer	44.4	63.2	75.0	66.7	66.7	66.7	
Straight	77.8	83.6	81.5	81.8	83.0	77.8	
Tee	53.8	63.2	64.7	56.3	56.3	42.9	
Valve	70.6	76.3	74.7	77.9	78.2	76.3	
Average	78.6	79.4	79.8	80.4	80.2	78.2	

表 1 MixUp の評価実験								
	0	0.1	0.3	0.5	0.7	0.9		
Elbow	81.5	83.5	79.6	82.3	85.7	83.3		
Flange	81.9	87.0	85.2	85.9	89.5	87.3		
Manometer	44.4	42.9	36.4	33.3	42.9	46.2		
Straight	77.8	79.7	78.7	81.5	79.4	78.7		
Tee	53.8	59.1	54.2	56.5	64.0	60.5		
Valve	70.6	73.8	76.2	77.1	81.8	78.7		
Average	78.6	81.5	79.3	81.0	84.1	81.9		

識精度が向上することがわかったが、改善は大きくなかった.切 り取る領域に部材がなく、ラベルとデータのバイアスの影響が考 えられる.(→意味がわからない..)

次に, MixUp による拡張の評価実験でも, CutMix と同じデータ セットを用いた.結果はに示す.この評価実験では, CutMix に比 べて,認識精度は向上していた.この結果から, MixUp による拡 張は認識精度の向上に有効であることがわかった.

4. 結言

本研究では、学習用の実測点群が十分でない場合に、CAD モデ ルから生成した点群を用いたデータ拡張について検討を行なった. その結果,提案したデプスマップの加工処理と,画像の MixUp は, 認識率の向上に寄与することがわかった.

今回は、デプスマップについて検証したが、3次元特徴量につい ても、データ拡張の効果を検討していく予定である.

参考文献

[1] 重田航平, 増田 宏:工業設備の大規模点群からの部材形状 の抽出と 認識(第3報),精密工学会秋季講演会,2020

[2] 花井 大輝, 重田 航平, 増田 宏: 点群を用いた工業設備の部材 認識における学習データに関する検討,精密工学会春季講演会,2021

[3] Sangdoo Y., Dongyoon H., Seong Joon O., et al., "CutMix: R egularization Strategy to Train Strong Classifiers with Localizable Features", International Conference on Computer Vision, 2019 [4] Hongyi Z., Moustapha C., Yann N. Dauphin, et al., "mixup: B

eyond empirical risk minimization", 2017

領域成長法による欠落付与:前報では、円形や多角形の形状で 欠損をさせていたが、本手法では領域成長法を用いた欠損の付与 を行う.ここでは、ランダムに選ばれた点からあらかじめ入力し たピクセル数分の点を削除し、オクルージョンによる大規模な欠

端部のばらつきの付与:前報では、端部のばらつきを識別器が 学習することによって認識率が向上する可能性について考察した. よって本報では,部材端部に小さな欠落を大量に付与することで, 端部のばらつきを再現した. (図 3(b))

小さな欠落の付与:実測データでは、スキャナと対象部材の距 離に応じて点密度が異なり、全体に小さな欠落が生じる可能性が ある.よって本手法では、デプスマップ全体に小さな欠落を付与 する処理を行う. ((図 3(c))

ノイズの付加:従来手法[2]では、ノイズの付加は識別率の向上 には寄与しないとされた. そこで本報では, 正規分布にしたがっ たノイズを付加する処理を行う.(

(f) 照射角度が浅い点の欠落

図 4(c))